215c, 4/8/20 Lecture outline. © Kenneth Intriligator 2020.

* Week 2 reading: Tong chapter 1, and start chapter 2.
 http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

- Continue from last time with the θ term.

$$
S_{\theta, u(1)}=\int d^{4} x \frac{\theta}{4 \pi^{2} \hbar c} \vec{E} \cdot \vec{B}=\int d^{4} x \frac{\theta}{32 \pi^{2} \hbar c} \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}=\hbar \int \theta c_{1}(F) \wedge c_{1}(F)
$$

The normalization is such that $S_{\theta}=\hbar \theta k$ with $k \in \mathbf{Z}$ an integer (called the instanton number). Then $e^{i S / \hbar}$ in the path integral is periodic in $\theta \cong \theta+2 \pi$. There are interesting variants, with different periodicities (e.g. 4π) on certain spacetime manifolds, and a discussion of such cases could make for a good final presentation topic.

- If θ is replaced with a dynamical scalar field, the field is called the axion a (we had a recent colloquium by Frank Wilczek about this). The axion's field target space is a circle, $a \cong a+2 \pi$. Let's replace $\theta \rightarrow \theta(t, \vec{x})$, which could either be the dynamical axion or an external background source for the operator $\tilde{F}^{\mu \nu} F_{\mu \nu}$. The classical EOM for A_{μ} become:

$$
\begin{gathered}
\nabla \cdot \vec{E}=j_{e}^{0}-\frac{\alpha c}{\pi} \nabla \theta \cdot \vec{B}, \quad \alpha \equiv e^{2} / 4 \pi \hbar c \\
-\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}+\nabla \times \vec{B}=\vec{j}_{e}+\frac{\alpha}{\pi c}(\dot{\theta} \vec{B}+\nabla \theta \times \vec{E}),
\end{gathered}
$$

where j_{e}^{μ} is the electric current associated with matter fields. The fact that θ enters the EOM only via derivative terms, so it drops out of the EOM if θ is a constant, fits with the fact that θ is the coefficient of a total derivative term. The fact that it is the total derivative of a gauge non-invariant does not affect the fact that it drops out of the EOM; this is a general aspect of topological terms. For example, there are intergalactic magnetic fields which, with a varying θ, can source electric fields.

In absence of electric and magnetic sources, we set $j_{e}^{\mu}=0$, and $j_{m}^{\mu}=0$, and the other two Maxwell equations are unchanged, $\nabla \cdot \vec{B}=0$ and $\partial_{t} \vec{B}+\nabla \times \vec{E}=0$. If we define $\vec{D}=\epsilon_{0}\left(\vec{E}+\frac{\alpha c \theta}{\pi} \vec{B}\right)$ and $\vec{H}=\mu_{0}^{-1}\left(\vec{B}-\frac{\alpha \theta}{\pi c} \vec{E}\right)$, then $\nabla \cdot \vec{D}=0$ and $\nabla \times \vec{H}-\partial_{t} \vec{D}=0$. At an interface where θ changes, there are associated surface charges and currents. If there are no other external charges and currents, these follow from $\hat{n} \cdot \Delta \vec{D}=0$ and $\hat{n} \times \Delta \vec{H}=0$. E.g. there are topological insulator materials which effectively have $\theta=\pi$. Consider an interface, e.g. $\theta=\pi \Theta(-z)$. Then if an external source makes \vec{B}, get surface electric charge density $\sigma=\alpha c B \hat{n}$. If an external source makes \vec{E}, get surface current density $\vec{K}=\alpha \epsilon_{0} c \vec{E} \times \hat{n}$. This is a Hall conductivity $\sigma=\frac{1}{2} \cdot \frac{e^{2}}{2 \pi \hbar}$.

- Dyons are objects with both electric charge q_{e} and magnetic charge q_{m}. The charge pair is written as $\left(q_{e}, q_{m}\right)$, so a basic electric charge is $(1,0)$ and a basic magnetic charge is $(0,1)$. The generalization of Dirac's quantization argument is to consider an object of charges $\left(q_{1, e}, q_{1, m}\right)$ in the background of an object with charges $\left(q_{2, e}, q_{2, m}\right)$ and the resulting Dirac-Zwanziger quantization condition is $q_{1, e} q_{2, m}-q_{2, e} q_{1, m} \in 2 \pi \hbar Z$.
- The Witten effect: θ gives electric charge $\sim \theta$ to magnetic monopoles. Suppose we take the minimum electric charge to be $q_{e}=1$, and the minimum magnetic charge is then $q_{m}=2 \pi \hbar$. The minimum magnetic charge monopole becomes a dyon with electric charge $q_{e}=\frac{\theta}{2 \pi}$. This can be understood from $\partial_{\mu} \theta$ terms in the above EOM for \vec{E} and \vec{B}. If θ is rotated from 0 to 2π, the original monopole becomes a bound state of a monopole and an object of electric charge 1 . There is a generalization for dyons, and it is compatible with the Dirac-Zwanziger quantization condition (θ cancels).
- The gauge group of the Standard Model is $s u(3)_{C} \times s u(2)_{W} \times u(1)_{Y}$ (there are some nice fine points about discrete symmetries that I might return to later, but ignore here). The $u(1)_{Y}$ part is similar to the above, though with a crucial difference that the left and right-handed chiral Fermions have different q charges. The $s u(3)_{C}$ and $s u(2)_{W}$ gauge symmetries are somewhat similar, but there are several crucial differences. First, these symmetries are non-Abelian (recall the non-Abelian nature of $s u(2)$ as seen by rotating a book along two axes in different orders giving different final orientations). Also, su(2) ${ }_{W}$ is chiral: it only acts on left-handed Fermions; this is why the weak interactions violate P. Also, $s u(2)_{W}$ and $u(1)_{Y}$ are broken to a $u(1)_{E M}$ subgroup by the vacuum expectation value of a Bose condensate (the Higgs field), which is why the $W_{\mu}^{ \pm}$and Z^{μ} gauge fields are massive. I intend to discuss these and related topics further in this class.
- Let's start by discussing the analogs of D_{μ} and $F_{\mu \nu}$ in a gauge theory with nonAbelian group G. To be concrete, I will sometimes take $G=S U(2)$, but most of the discussion for now will be general. I will also sometimes use the notation of writing the gauge group, in lower case letters, e.g. su(2), to distinguish a local gauge symmetry vs global symmetry. We can consider a pure Yang-Mills theory, which means only gauge fields and no matter representations, or we can include matter fields. The matter fields could be scalars (e.g. the Higgs in the SM) ϕ or Fermions ψ (as in QED, these are Dirac if $m \neq 0$ or, for $m=0$, we can have left and / or right-handed chiral fermions - more on this shortly). The matter fields are in representations of the gauge group, and the most-discussed cases are the fundamental, anti-fundamental, and adjoint representations;
for $s u(2)$ the fundamental and anti-fundamental are $\mathbf{2} \cong \overline{\mathbf{2}}$ (like $j=\frac{1}{2}$ for the rotation group), and the $\mathbf{3}$ adjoint representation (like $j=1$ for rotations).

Consider e.g. $\operatorname{su}(N)$ with ψ_{α}^{c} in the fundamental, where $\alpha=1,2$ is a spinor index and $c=1, \ldots N$ is the $s u(N)$ color index; the Lorentz index α goes for the ride and will usually be suppressed. The $s u(N)$ gauge symmetry takes $\psi^{c} \rightarrow U^{c}{ }_{d}(x) \psi^{d}$ where we sum the repeated color index. Here $U(x)$ is an element of the $S U(N)$ group manifold (e.g. for $S U(2)$ it's $\left.\cong S^{3}\right): U^{\dagger} U=\mathbf{1}$ and $\operatorname{det} U=1$, and we can thus write it as the exponential of Hermitian, traceless $N \times N$ matrices; there are $N^{2}-1$ of these and for the rotation group these are the 3 generators J^{a}. An anti-fundamental can be written as $\tilde{\psi}_{c}$ which transforms as $\tilde{\psi}_{c} \rightarrow U^{* d}{ }_{c} \tilde{\psi}_{d}$ and $U^{\dagger} U$ means that δ_{d}^{c} is invariant and $\operatorname{det} U=1$ means that $\epsilon_{c_{1} \ldots c_{N}}$ and $\epsilon^{c_{1} \ldots c_{N}}$ are invariant. For $S U(2)$, the fundamental and anti-fundamental are related by $\tilde{\psi}_{c}=\epsilon_{c d} \psi^{d}$.

- We now want to write a covariant derivative, such that $\psi \rightarrow U \psi$ takes $D_{\mu} \psi \rightarrow$ $D_{\mu}^{U} U \psi=U D_{\mu} \psi$, so $D_{\mu}^{U}=U D_{\mu} U^{-1}$. Let's write it as $D_{\mu}=\partial_{\mu}-i A_{\mu}$ (this changes the sign of A_{μ} vs my convention for $u(1)$, to agree with the notation for the non-Abelian case in other references), with $A_{\mu}=A_{\mu}^{a} T^{a}$. Note that, when we write $D_{\mu}=\partial_{\mu}-i A_{\mu}$, it should be understood that $A_{\mu}=A_{\mu}^{a} T_{R}^{a}$, with R the representation of the field that it acts on. For example, if acting on something that is invariant, i.e. the trivial rep, then $T_{R}^{a}=0$ and $D_{\mu} \rightarrow \partial_{\mu}$ (similar to how in GR the ∇_{μ} notation has implicit the connection, which depend on what it acts on, with e.g. $\nabla_{\mu} \rightarrow \partial_{\mu}$ if acting on a scalar). For $u(1)$, the generator $T_{R}^{a} \rightarrow q$, the electric charge of the operator on which it acts. For $s u(2)$, if acting on the rep labeled by I (analogous to j for the rotation group), then e.g. $D_{\mu}=\partial_{\mu} \mathbf{1}_{2 I+1}+i A_{\mu}^{a} T_{2 I+1}^{a}$, where from now on I will not explicitly write the $\mathbf{1}$ or the R reminder that D_{μ} depends on the representation of the field on which it acts.

We want $D_{\mu}^{U}(U \psi)=U D_{\mu} \psi$, i.e. $\partial_{\mu} U-i A_{\mu}^{U} U=-i U A_{\mu}$. So $A_{\mu}^{U}=i U \partial_{\mu} U^{-1}+$ $U A_{\mu} U^{-1}$. As a check, for $U(1)$ with $U=e^{i \alpha}$ this gives $A_{\mu}^{U}=\partial_{\mu} \alpha+A_{\mu}$. More generally, taking $U=\exp (i \alpha)$, with $\alpha=\alpha^{a} T^{a}$ and expand for an infinitesimal α^{a}, get $\delta A_{\mu}=D_{\mu} \alpha=$ $\partial_{\mu} \alpha+\left[i A_{\mu}, \alpha\right]$. Writing $D_{\mu}^{a}=\partial_{\mu}-i A_{\mu}^{a},\left(D_{\mu} \alpha\right)^{a}=\partial_{\mu} \alpha^{a}-A_{\mu}^{b} \alpha^{c} f^{a b c}$.

The gauge field strength tensor corresponds to a commutator of covariant derivatives (analogous to the Riemann curvature tensor):

$$
\begin{gathered}
F_{\mu \nu}=i\left[D_{\mu}, D_{\nu}\right]=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right]=F_{\mu \nu}=F_{\mu \nu}^{a} T^{a} \\
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
\end{gathered}
$$

$F_{\mu \nu}$ is in the adjoint rep, transforming as $F_{\mu \nu} \rightarrow F_{\mu \nu}^{U}=U F_{\mu \nu} U^{-1}$. For $U=$ $\exp \left(i \alpha^{a} T^{a}\right)$ and α^{a} infinitesimal, get $\delta F_{\mu \nu}=i\left[\alpha, F_{\mu \nu}\right]$, which is the statement that $F_{\mu \nu}$ transforms in the adjoint rep. The Lagrangian density must of course be gauge invariant, and the gauge kinetic terms come from the quadratic casimir (squaring and taking the trace): $\mathcal{L} \supset-\frac{1}{2 g^{2}} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)$. E.g. for $G=S U(2)$, we can use a notation inspired by the rotation group, where the $j=1$ adjoint is denoted by a 3 d vector, so $\vec{F}=\partial_{\mu} \vec{A}_{\nu}-\partial_{\nu} \vec{A}_{\mu}+\vec{A}_{\mu} \times \vec{A}_{\nu}$, and the gauge kinetic terms are $-\frac{1}{4 g^{2}} \vec{F}_{\mu \nu} \cdot \vec{F}^{\mu \nu}$.

