215c, 4/8/20 Lecture outline. © Kenneth Intriligator 2020. * Week 2 reading: Tong chapter 1, and start chapter 2. http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Continue from last time with the θ term.

$$S_{\theta,u(1)} = \int d^4x \frac{\theta}{4\pi^2 \hbar c} \vec{E} \cdot \vec{B} = \int d^4x \frac{\theta}{32\pi^2 \hbar c} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} = \hbar \int \theta c_1(F) \wedge c_1(F).$$

The normalization is such that $S_{\theta} = \hbar \theta k$ with $k \in \mathbb{Z}$ an integer (called the instanton number). Then $e^{iS/\hbar}$ in the path integral is periodic in $\theta \cong \theta + 2\pi$. There are interesting variants, with different periodicities (e.g. 4π) on certain spacetime manifolds, and a discussion of such cases could make for a good final presentation topic.

• If θ is replaced with a dynamical scalar field, the field is called the *axion a* (we had a recent colloquium by Frank Wilczek about this). The axion's field target space is a circle, $a \cong a + 2\pi$. Let's replace $\theta \to \theta(t, \vec{x})$, which could either be the dynamical axion or an external background source for the operator $\tilde{F}^{\mu\nu}F_{\mu\nu}$. The classical EOM for A_{μ} become:

$$\nabla \cdot \vec{E} = j_e^0 - \frac{\alpha c}{\pi} \nabla \theta \cdot \vec{B}, \qquad \alpha \equiv e^2 / 4\pi \hbar c,$$
$$-\frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} + \nabla \times \vec{B} = \vec{j}_e + \frac{\alpha}{\pi c} (\dot{\theta} \vec{B} + \nabla \theta \times \vec{E})$$

where j_e^{μ} is the electric current associated with matter fields. The fact that θ enters the EOM only via derivative terms, so it drops out of the EOM if θ is a constant, fits with the fact that θ is the coefficient of a total derivative term. The fact that it is the total derivative of a gauge non-invariant does not affect the fact that it drops out of the EOM; this is a general aspect of topological terms. For example, there are intergalactic magnetic fields which, with a varying θ , can source electric fields.

In absence of electric and magnetic sources, we set $j_e^{\mu} = 0$, and $j_m^{\mu} = 0$, and the other two Maxwell equations are unchanged, $\nabla \cdot \vec{B} = 0$ and $\partial_t \vec{B} + \nabla \times \vec{E} = 0$. If we define $\vec{D} = \epsilon_0 (\vec{E} + \frac{\alpha c \theta}{\pi} \vec{B})$ and $\vec{H} = \mu_0^{-1} (\vec{B} - \frac{\alpha \theta}{\pi c} \vec{E})$, then $\nabla \cdot \vec{D} = 0$ and $\nabla \times \vec{H} - \partial_t \vec{D} = 0$. At an interface where θ changes, there are associated surface charges and currents. If there are no other external charges and currents, these follow from $\hat{n} \cdot \Delta \vec{D} = 0$ and $\hat{n} \times \Delta \vec{H} = 0$. E.g. there are topological insulator materials which effectively have $\theta = \pi$. Consider an interface, e.g. $\theta = \pi \Theta(-z)$. Then if an external source makes \vec{E} , get surface electric charge density $\sigma = \alpha c B \hat{n}$. If an external source makes \vec{E} , get surface current density $\vec{K} = \alpha \epsilon_0 c \vec{E} \times \hat{n}$. This is a Hall conductivity $\sigma = \frac{1}{2} \cdot \frac{e^2}{2\pi\hbar}$. • Dyons are objects with both electric charge q_e and magnetic charge q_m . The charge pair is written as (q_e, q_m) , so a basic electric charge is (1, 0) and a basic magnetic charge is (0, 1). The generalization of Dirac's quantization argument is to consider an object of charges $(q_{1,e}, q_{1,m})$ in the background of an object with charges $(q_{2,e}, q_{2,m})$ and the resulting Dirac-Zwanziger quantization condition is $q_{1,e}q_{2,m} - q_{2,e}q_{1,m} \in 2\pi\hbar Z$.

• The Witten effect: θ gives electric charge $\sim \theta$ to magnetic monopoles. Suppose we take the minimum electric charge to be $q_e = 1$, and the minimum magnetic charge is then $q_m = 2\pi\hbar$. The minimum magnetic charge monopole becomes a dyon with electric charge $q_e = \frac{\theta}{2\pi}$. This can be understood from $\partial_{\mu}\theta$ terms in the above EOM for \vec{E} and \vec{B} . If θ is rotated from 0 to 2π , the original monopole becomes a bound state of a monopole and an object of electric charge 1. There is a generalization for dyons, and it is compatible with the Dirac-Zwanziger quantization condition (θ cancels).

• The gauge group of the Standard Model is $su(3)_C \times su(2)_W \times u(1)_Y$ (there are some nice fine points about discrete symmetries that I might return to later, but ignore here). The $u(1)_Y$ part is similar to the above, though with a crucial difference that the left and right-handed chiral Fermions have different q charges. The $su(3)_C$ and $su(2)_W$ gauge symmetries are somewhat similar, but there are several crucial differences. First, these symmetries are non-Abelian (recall the non-Abelian nature of su(2) as seen by rotating a book along two axes in different orders giving different final orientations). Also, $su(2)_W$ is chiral: it only acts on left-handed Fermions; this is why the weak interactions violate P. Also, $su(2)_W$ and $u(1)_Y$ are broken to a $u(1)_{EM}$ subgroup by the vacuum expectation value of a Bose condensate (the Higgs field), which is why the W^{\pm}_{μ} and Z^{μ} gauge fields are massive. I intend to discuss these and related topics further in this class.

• Let's start by discussing the analogs of D_{μ} and $F_{\mu\nu}$ in a gauge theory with non-Abelian group G. To be concrete, I will sometimes take G = SU(2), but most of the discussion for now will be general. I will also sometimes use the notation of writing the gauge group, in lower case letters, e.g. su(2), to distinguish a local gauge symmetry vs global symmetry. We can consider a pure Yang-Mills theory, which means only gauge fields and no matter representations, or we can include matter fields. The matter fields could be scalars (e.g. the Higgs in the SM) ϕ or Fermions ψ (as in QED, these are Dirac if $m \neq 0$ or, for m = 0, we can have left and / or right-handed chiral fermions – more on this shortly). The matter fields are in representations of the gauge group, and the most-discussed cases are the fundamental, anti-fundamental, and adjoint representations; for su(2) the fundamental and anti-fundamental are $\mathbf{2} \cong \overline{\mathbf{2}}$ (like $j = \frac{1}{2}$ for the rotation group), and the **3** adjoint representation (like j = 1 for rotations).

Consider e.g. su(N) with ψ_{α}^{c} in the fundamental, where $\alpha = 1, 2$ is a spinor index and $c = 1, \ldots N$ is the su(N) color index; the Lorentz index α goes for the ride and will usually be suppressed. The su(N) gauge symmetry takes $\psi^{c} \to U^{c}{}_{d}(x)\psi^{d}$ where we sum the repeated color index. Here U(x) is an element of the SU(N) group manifold (e.g. for SU(2) it's $\cong S^{3}$): $U^{\dagger}U = \mathbf{1}$ and det U = 1, and we can thus write it as the exponential of Hermitian, traceless $N \times N$ matrices; there are $N^{2} - 1$ of these and for the rotation group these are the 3 generators J^{a} . An anti-fundamental can be written as $\tilde{\psi}_{c}$ which transforms as $\tilde{\psi}_{c} \to U^{*d}{}_{c}\tilde{\psi}_{d}$ and $U^{\dagger}U$ means that δ_{d}^{c} is invariant and det U = 1 means that $\epsilon_{c_{1}...c_{N}}$ and $\epsilon^{c_{1}...c_{N}}$ are invariant. For SU(2), the fundamental and anti-fundamental are related by $\tilde{\psi}_{c} = \epsilon_{cd}\psi^{d}$.

• We now want to write a covariant derivative, such that $\psi \to U\psi$ takes $D_{\mu}\psi \to D_{\mu}^{U}U\psi = UD_{\mu}\psi$, so $D_{\mu}^{U} = UD_{\mu}U^{-1}$. Let's write it as $D_{\mu} = \partial_{\mu} - iA_{\mu}$ (this changes the sign of A_{μ} vs my convention for u(1), to agree with the notation for the non-Abelian case in other references), with $A_{\mu} = A_{\mu}^{a}T^{a}$. Note that, when we write $D_{\mu} = \partial_{\mu} - iA_{\mu}$, it should be understood that $A_{\mu} = A_{\mu}^{a}T_{R}^{a}$, with R the representation of the field that it acts on. For example, if acting on something that is invariant, i.e. the trivial rep, then $T_{R}^{a} = 0$ and $D_{\mu} \to \partial_{\mu}$ (similar to how in GR the ∇_{μ} notation has implicit the connection, which depend on what it acts on, with e.g. $\nabla_{\mu} \to \partial_{\mu}$ if acting on a scalar). For u(1), the generator $T_{R}^{a} \to q$, the electric charge of the operator on which it acts. For su(2), if acting on the rep labeled by I (analogous to j for the rotation group), then e.g. $D_{\mu} = \partial_{\mu} \mathbf{1}_{2I+1} + iA_{\mu}^{a}T_{2I+1}^{a}$, where from now on I will not explicitly write the **1** or the R reminder that D_{μ} depends on the representation of the field on which it acts.

We want $D^U_{\mu}(U\psi) = UD_{\mu}\psi$, i.e. $\partial_{\mu}U - iA^U_{\mu}U = -iUA_{\mu}$. So $A^U_{\mu} = iU\partial_{\mu}U^{-1} + UA_{\mu}U^{-1}$. As a check, for U(1) with $U = e^{i\alpha}$ this gives $A^U_{\mu} = \partial_{\mu}\alpha + A_{\mu}$. More generally, taking $U = \exp(i\alpha)$, with $\alpha = \alpha^a T^a$ and expand for an infinitesimal α^a , get $\delta A_{\mu} = D_{\mu}\alpha = \partial_{\mu}\alpha + [iA_{\mu}, \alpha]$. Writing $D^a_{\mu} = \partial_{\mu} - iA^a_{\mu}$, $(D_{\mu}\alpha)^a = \partial_{\mu}\alpha^a - A^b_{\mu}\alpha^c f^{abc}$.

The gauge field strength tensor corresponds to a commutator of covariant derivatives (analogous to the Riemann curvature tensor):

$$F_{\mu\nu} = i[D_{\mu}, D_{\nu}] = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}] = F_{\mu\nu} = F^{a}_{\mu\nu}T^{a},$$
$$F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + f^{abc}A^{b}_{\mu}A^{c}_{\nu}.$$

 $F_{\mu\nu}$ is in the adjoint rep, transforming as $F_{\mu\nu} \rightarrow F_{\mu\nu}^U = UF_{\mu\nu}U^{-1}$. For $U = \exp(i\alpha^a T^a)$ and α^a infinitesimal, get $\delta F_{\mu\nu} = i[\alpha, F_{\mu\nu}]$, which is the statement that $F_{\mu\nu}$ transforms in the adjoint rep. The Lagrangian density must of course be gauge invariant, and the gauge kinetic terms come from the quadratic casimir (squaring and taking the trace): $\mathcal{L} \supset -\frac{1}{2g^2} \operatorname{Tr}(F_{\mu\nu}F^{\mu\nu})$. E.g. for G = SU(2), we can use a notation inspired by the rotation group, where the j = 1 adjoint is denoted by a 3d vector, so $\vec{F} = \partial_{\mu}\vec{A}_{\nu} - \partial_{\nu}\vec{A}_{\mu} + \vec{A}_{\mu} \times \vec{A}_{\nu}$, and the gauge kinetic terms are $-\frac{1}{4g^2}\vec{F}_{\mu\nu}\cdot\vec{F}^{\mu\nu}$.