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⋆ Week 3 reading: Tong chapter 2.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Continue from last time with non-Abelian gauge theory: ψ → Uψ takes Dµψ →

DU
µ Uψ = UDµψ. So Dµ = ∂µ − iAµ with AU

µ = U(i∂µ +Aµ)U
−1.

Fµν = i[Dµ, Dν ] = ∂µAν − ∂νAµ − i[Aµ, Aν ] = Fµν = F a
µνT

a,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν .

• In the differential form notation, A = Aa
µT

adxµ, and F = 1
2F

a
µνT

a
adjdx

µ ∧ dxν is

given by F = dA − iA ∧ A. The i’s are annoying enough that it is common to replace

the Hermitian generators T a
here with anti-Hermitian generators T a

new = −iT a
here and then

Anew = −iAhere, and Fnew = −iFhere so Fnew = dAnew + Anew ∧ Anew. I’ll stick with

Hermitian generators.

• Fµν is in the adjoint rep: Fµν → FU
µν = UFµνU

−1. For U = exp(iαaT a) and αa

infinitesimal, get δFµν = i[α, Fµν ]. Fµν = 0 if and only if Aµ is pure-gauge, Aµ = iU∂µU
−1.

The fact that Fµν is in the adjoint representation is a key physical difference between

Abelian (commuting) vs non-Abelian gauge theories. The gauge fields are always in the

adjoint representation, and for Abelian (u(1) and products) gauge theories the adjoint is

charge neutral, and the photons are thus gauge invariant states. For non-Abelian gauge

theories, the adjoint gauge fields, e.g. gluons, are not gauge invariant states. Note also that

TrFµν = 0 since TrT a = 0 for simple (without added U(1) factors) non-Abelian groups

(e.g. SU(N) vs U(N), detU = exp(iTrαaT a) = 1 gives TrT a = 0. One can form gauge

invariant composites, e.g. glueballs, from 2 or more gluons, e.g. TrFµνF
µν .

• Recall that in u(1) gauge theory, writing Fµν in terms of Aµ ensures that the

two Maxwell equations expressing absence of magnetic monopoles and currents are au-

tomatically satisfied: we can write this in relativistic notation as ∂µǫ
µνρσFρσ = 0, or

equivalently the Bianchi identity ∂µFρσ + ∂ρFσµ + ∂σFµρ = 0. In the non-Abelian

version, writing Fµν in terms of Aµ ensures a gauge covariant version of the Bianchi

identity DµFρσ + DρFσµ + DσFµρ = 0, where (DµFρσ) = ∂µFρσ − i[Aµ, Fρσ], i.e.

(DµFρσ)
a = ∂µF

a
ρσ + fabcAb

µF
c
ρσ. The covariant derivatives in the Bianchi identity en-

sure that it holds in any gauge.

• The Lagrangian density must of course be gauge invariant, and the gauge ki-

netic terms come from the quadratic casimir (squaring and taking the trace): L ⊃

1



− 1
2g2Tr(FµνF

µν). E.g. for G = SU(2), we can use a notation inspired by the rotation

group, where the j = 1 adjoint is denoted by a 3d vector, so ~F = ∂µ ~Aν −∂ν ~Aµ+ ~Aµ × ~Aν ,

and the gauge kinetic terms are − 1
4g2

~Fµν · ~Fµν .

Expanding it out, with TrT aT b = 1
2δab, get

Lgauge = −
1

4g2
[(∂µA

a
ν − ∂νA

a
µ)

2 + 4fabcAb
µA

c
ν∂

µAνa + fabcfafgAb
µA

c
νA

µfAνg].

The cubic and quartic terms in Aa
µ mean that even the pure Yang-Mills case (no matter)

is interacting, with non-linear EOM. The non-linearity is because the Fµν are charged, in

the adjoint representation.

• The coupling constant g is the analog of the electric coupling e, and we can try

perturbation theory in g2/4π, the analog of the fine structure constant. To do this, it

is convenient to rescale Aµ/g ≡ Âµ, so the Âµ have canonical kinetic terms. With that

normalization,

L ⊃ −
1

4
(∂µÂ

a
ν − ∂νÂ

a
µ)

2 − gfabcÂb
µÂ

c
ν∂

µÂνa −
1

4
g2fabcfafgÂb

µÂ
c
νÂ

µf Âνg.

The last two terms mean that there are Feynman interaction vertices with three gauge

fields ∼ gfabc, and with four gauge fields ∼ g2fabcfafg. We will discuss the Feynman rules

in detail soon – this is just an appetizer.

• Gauge theories can also have matter fields, in various representations. For a u(1)

gauge theory we could have just the photon, which is called pure Maxwell theory and is

a free theory, or we could have e.g. QED with the photon and an electron matter field.

For a non-Abelian gauge theory we can have just the gauge fields, which is called pure

Yang-Mills theory, and it is a strongly coupled theory in the IR; as we will discuss, it is

asymptotically free in the UV, and RG flows to strong coupling in the IR. We can also add

matter, e.g. the quark fields in the case of QCD. Suppose that we have a Fermion ψ in

a representation R of the gauge group. To be concrete, we can take su(N), with a Dirac

Fermion in the fundamental, with

L = −
1

4g2
F a
µνF

a,µν + ψ̄(i /D −m)ψ.

Write out explicitly the suppressed color indices ψi, ψ̄j, mδ
j
i , iδij/∂+ /AaT a,j

i . If the su(N)

were a global symmetry, Noether’s theorem would give the conserved matter currents

ja,µ = ψ̄jγ
µT a,j

i ψi. Note that this current is in the adjoint representation, and L ⊃

2



Aa
µj

µ,a. Because of the gauge field terms involving fabc, it can be checked that this

current is no longer conserved, ∂µj
a,µ 6= 0, but is instead covariantly conserved Dµj

a,µ = 0.

This is expected and general: derivatives should be replaced with appropriate covariant

derivatives. Indeed, under a gauge transformation ψ → Uψ, writing jµ = ja,µT a
Ad, we

have jµ → UjµU−1, so ∂µj
µ does not transform nicely and setting it to zero would not

be gauge invariant; writing Dµ fixes this. There is no conserved, gauge invariant current –

only a covariantly conserved one. This means that there is no associated conserved charge.

• Consider the EL equations for Aa
µ with L = Lgauge+Lmatter where Lmatter could be

e.g. the example above. One way to write the EL equations is as ∂µ
∂L

∂(∂µAa
ν)

= ∂L
∂Aa

ν

. The

LHS is−g−2∂µF
a,µν (assuming that Lmatter does not have any ∂µA

a
ν terms, as above). The

RHS is jνa+g−2fabcAb
µF

c,νµ. Acting with ∂ν gives zero on both sides, but the RHS is not

a good current choice, because it is not gauge covariant - it is a mess because of the additive

shift in Ab
µ. Again, it is better to rewrite everything with covariant derivatives. Then get

Dµ
∂L

∂(DµAa
ν)

= ∂Lmatter

∂Aa
ν

≡ jaν , and both sides transform in the adjoint representation. The

LHS is −g−2DµF
µν , and it can be checked that Dν gives zero on both sides.

• As in E&M, we can consider how a wavefunction or the path integral is affected

if we move a charged object along some path. The charged object could either be a

quanta of one of the dynamical fields, or an external charged source. As in E&M it

can be either electrically charged or magnetically charged, or dyonically charged. For an

electrically charged object in E&M, we get e.g. ψ ∼ ei
∫

Aµj
µ/h̄

∼ eiqe
∫

Aµdx
µ/h̄. In the

non-Abelian case, we can do something similar, where we replace qe with T a
R for the group

representation of the object. Because the Aa
µ do not commute, we need to be careful with

the ordering. As we saw in 215a, the path integral automatically gives time ordering, so

the correct object to consider is OWL[xi, xf ;C]R = P exp(i
∫
dxµAa

µT
a
R), where P is path

time ordering the operators along the space curve C (which has endpoints xi and xf ), and

OWL stands for open Wilson line. Under a gauge transformation, OWL[xi, xf ;C]R →

U(xi)ROWL[xi, xf ;C]RU
†(xf )R. The subscript is a reminder that everything is in a

representation R, but it gets tedious to keep writing it so it is usually left implicit. To get

something gauge invariant, we can consider the Wilson loop, where C is a closed curve:

W [C]R = TrRP(exp i
∮
A/h̄). If we consider instead a magnetically charged object, the

analogous object is called the ’t Hooft loop. I will discuss these quantities more later.
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