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⋆ Week 3 reading: Tong chapter 2.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Last time: Fµν = ∂µAν − ∂νA
µ − i[Aµ, Aν ] is in the adjoint representation of the

gauge group, and we consider L = LYM +Lmatter+Lθ where LYM = − 1
2g2TrFµνF

µν , and

Lmatter depends on the theory’s dynamical matter, e.g. it could be LDirac = ψ̄(i /D−m)ψ.

• Recall an issue with quantizing gauge fields: Π0 = ∂L
∂(∂0A0) = 0, which is a constraint

rather than something to quantize, and hence the A0 EOM (Gauss’ law) becomes a con-

straint on physical states. We can choose A0 = 0 by a gauge choice. It helps to gauge fix,

and then can verify at the end that the results are independent of the gauge choice. We

will return to gauge fixing choices and issues more later.

• The theta term for a non-Abelian gauge theory is

Sθ =
θ

16π2

∫

d4xTr∗FµνFµν =
θ

8π2

∫

TrF ∧ F = θ

∫

c2(F ),

∗Fµν = 1
2
ǫµνρσFρσ and c(F ) =

∑

n cn(F ) = eF/2π. In the u(1) case it involved c1(F ) ∧

c1(F ) but here it’s c2(F ) and c1(F ) = 0 since TrT a = 0. Many aspects are similar to

the u(1) case. As in the u(1) case, Sθ is topological in its dependence in spacetime: the

Lorentz indices are contracted with an epsilon tensor, rather than the spacetime metric,

and it can only depend on the spacetime via the topology. As in the u(1) case, it is also

topological in its dependence on the gauge field – this is because the θ term is a (sort of)

total derivative:

Sθ = θ

∫

d4x∂µK
µ Kµ =

1

8π2
ǫµνρσTr(Aν∂ρAσ −

2

3
iAνAρAσ),

In terms of differential forms

c2(F ) =
1

8π2
TrF ∧ F = dCS(A), CS(A) =

1

8π2
Tr(AdA−

2

3
iA ∧ A ∧A),

In the notation with anti-Hermitan generators, Fhere → iFnew etc, the new quantities

satisfy c2(F ) = dCS(A) with CS(A) = 1
8π2Tr(AdA + 2

3
A3). As in the u(1) case, the

classical EOM are unaffected if θ is constant, and there would be corrections to the Aµ

EOM involving ∂µθ if it is not constant. The theta term is not completely trivial, despite

being sort-of a total derivative, because CS(A) is not gauge invariant. The Chern-Simons

term is topological, and has many interesting connections with physics.
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Suppose that we choose a gauge with A0 = 0. Then ∂µK
µ = ∂0K

0 with
∫

d3~xK0 =

W [ ~A] = 1
8π2

∫

d3xǫijkTr(Ai∂jAk −
2i
3 AiAjAk), which is the 3d Chern-Simons action. The

A0 = 0 gauge fixing condition still allows gauge transformations by time independent

U(~x). If we impose U(|x| → ∞) → 1, we can essentially replace the space R3 → S3

and the remaining gauge transformations are associated with topologically non-trivial

maps S3 → G. The CS action W [A] is actually almost gauge invariant, but it picks

up an additive integer shift under large gauge transformations, associated with the ho-

motopy π3(G) of S3
∞ → G. Under a gauge transformation U(x), ~A → U( ~A + i ~∇)U−1,

get W [A] → W [A] + 1
4π2

∫

d3xǫijk(i∂j(Tr(∂iUU
−1Ak))) − n(U), where the total deriva-

tive term can be dropped (unless we consider the case where space has a boundary) and

n[U ] =
∫

d3~x
24π2 ǫ

ijkTr((U−1∂iU)(U−1∂jU)(U−1∂kU)) ∈ Z measures the topological wind-

ing. Imposing U → 1 at spatial infinity (otherwise U should be interpreted as a global

part of the gauge group) means that U maps S3 → G, and n[U ] measures the π3(U)

winding number. All simple non-Abelian groups have π3(G) = Z, which can be under-

stood as coming from SU(2) ⊂ G and SU(2) ∼= S3 (to see this note that U ∈ SU(2)

can be written as

(

z1 −z2
z∗2 z∗1

)

with (z1, z2) complex and |z1|
2 + |z2|

2 = 1; this S3 can be

thought of as the Euler angles in the case of the rotation group) and π3(S
3) = Z. For

example, take U ∈ SU(2) with U = exp(i( 12σ
a)αa(x)) with αa = r̂af(r) where f(0) = 0

and f(∞) = 4πn: for n = 1 this directly maps the physical space S3 to the group target

space S3 and has n[U ] = 1, and more generally it has n[U ] = n.

The fact that W [A] can shift by an integer under large gauge transformations means

that e2πiKW [A] is gauge invariant if K ∈ Z, so a Chern-Simons term can be added to the 3d

action, with quantized coefficient, without spoiling gauge invariance of the path integral.

• Consider L = − 1
2g2TrF

µνFµν + θ
16π2Tr

∗FµνFµν in Aa
0 = 0 gauge:

L =
1

g2
Tr( ~̇A2 − ~B2) +

θ

4π
Tr ~̇A · ~B,

so ~Π = ∂L

∂ ~̇A
= g−2 ~E+ θ

8π2
~B and H = g−2Tr( ~E2+ ~B2) = g2Tr(~Π− θ

8π2
~B)2+g−2Tr ~B2. Even

though we take A0 = 0, we still need to impose the EOM for A0, which gives a non-Abelian

version of Gauss’ law, DiEi = 0. As usual In QFT we do not impose EOMs as operator

equations, but just that it holds for on-shell physical states, so DiEi|physical〉 = 0. The

Hilbert space includes non-gauge invariant states, and Gauss’ law is equivalent to the

condition that the physical states should be charge neutral.
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