215c, 4/20/20 Lecture outline. (c) Kenneth Intriligator 2020.
\star Week 4 reading: Tong chapter 2.
http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

- Recall from last time that in $A_{0}=0$ gauge $S_{\theta}=\theta \int d t \partial_{0} W[A]$ where $W[\vec{A}]=$ $\frac{1}{8 \pi^{2}} \int d^{3} x \epsilon^{i j k} \operatorname{Tr}\left(A_{i} \partial_{j} A_{k}-\frac{2 i}{3} A_{i} A_{j} A_{k}\right)$ is gauge invariant under $\vec{A} \rightarrow U(\vec{A}+i \vec{\nabla}) U^{-1}$ up to shifts by $n[U] \in \mathbf{Z}$ which measures $\pi_{3}(G)$ from $\left.R^{3}\right|_{t=\text { const }}+\{\cdot \infty\} \cong S^{3} \rightarrow U$. In $A_{0}=0$ gauge, $\mathcal{L}=-\frac{1}{2 g^{2}} \operatorname{Tr} F^{\mu \nu} F_{\mu \nu}+\frac{\theta}{16 \pi^{2}} \operatorname{Tr}^{*} F^{\mu \nu} F_{\mu \nu}$ gives

$$
\mathcal{L}=\frac{1}{g^{2}} \operatorname{Tr}\left(\dot{\vec{A}}^{2}-\vec{B}^{2}\right)+\frac{\theta}{4 \pi} \operatorname{Tr} \dot{\vec{A}} \cdot \vec{B},
$$

so $\vec{\Pi}=\frac{\partial \mathcal{L}}{\partial \vec{A}}=g^{-2} \vec{E}+\frac{\theta}{8 \pi^{2}} \vec{B}$ and $\mathcal{H}=g^{-2} \operatorname{Tr}\left(\vec{E}^{2}+\vec{B}^{2}\right)=g^{2} \operatorname{Tr}\left(\vec{\Pi}-\frac{\theta}{8 \pi^{2}} \vec{B}\right)^{2}+g^{-2} \operatorname{Tr} \vec{B}^{2}$. Even though we take $A_{0}=0$, we still need to impose the EOM for A_{0}, which gives a non-Abelian version of Gauss' law, $\mathcal{D}_{i} E_{i}=0$. As usual In QFT we do not impose EOMs as operator equations, but just that it holds for on-shell physical states, so $\mathcal{D}_{i} E_{i} \mid$ physical $\rangle=0$. The Hilbert space includes non-gauge invariant states, and Gauss' law is equivalent to the condition that the physical states should be charge neutral.

- The effect of the θ term is similar to the θ term that we saw for QM with magnetic flux inside. There were two ways to see it: we could either take $H=\frac{1}{2 m R^{2}}\left(-i \partial_{\phi}+\frac{\theta}{2 \pi}\right)^{2}$ and impose $\psi(\phi+2 \pi)=\psi(\phi)$, or we could try to eliminate θ by something that is roughly just a gauge transformation $\psi^{\prime}=e^{i \theta \phi / 2 \pi}$ and then $H=\frac{1}{2 m R^{2}}\left(-i \partial_{\phi}\right)^{2}$, but then $\psi(\phi+2 \pi)=$ $e^{i \theta} \psi(\phi)$ has twisted boundary conditions. This shows that $\theta \sim \theta+2 \pi$. Likewise, there are two equivalent ways to see the θ parameter in gauge theories. Consider the functional $\Psi(\vec{A})=\langle\vec{A} \mid \Psi\rangle$. We can then take $\vec{\Pi} \rightarrow-i \frac{\delta}{\delta \vec{A}}$ and write a SE with the \mathcal{H} above, which involves θ. Alternatively, we can consider $\Psi^{\prime}(\vec{A})=e^{i \theta W[\vec{A}]} \Psi(\vec{A})$, which eliminates the θ term in the SE , but Ψ^{\prime} satisfies twisted boundary conditions: $\Psi^{\prime}(A) \rightarrow e^{i n \theta} \Psi(A)$ under a large gauge transformation with $\pi_{3}(G)$ winding n. This shows that $\theta \sim \theta+2 \pi$. Aside: there are some interesting fine points that are being glossed over here. For example, there are different version of $s u(N)$ Yang-Mills that differ in global observables - Wilson and 't Hooft lines - e.g. su (N) which has $\theta \sim \theta+2 \pi$ vs $s u(N) / Z_{N}$ which has $\theta \sim \theta+2 \pi N$; see Tong's notes for a nice discussion and details. In terms of the Standard Model, the group is $s u(3)_{C} \times s u(2)_{W} \times u(1)_{Y} / \Gamma$ were Γ could be $1, Z_{2}, Z_{3}$, or Z_{6}; again, see Tong for details. These could be a good topics for your final presentation.
- The θ term multiples the instanton density, which is best understood in Euclidean spacetime. We discussed the Euclidean Wick rotation in 215a. Recall that the Feynman
propagator goes above the ω_{k} pole and below the $-\omega_{k}$ pole and that we can thus rotate $k_{0} \rightarrow e^{+i \alpha} k_{0}$ with $0 \leq \alpha \leq \pi / 2$ to make the integral go up the imaginary axis, so $k_{0} \rightarrow$ $+i k_{0}$, and x_{0} should rotate oppositely (to keep the FT well defined), $x_{0} \rightarrow-i x_{0}$. The Euclidean action is then $-i$ times the continuation of the Minkowski action, e.g. starting with $S=\int d t\left(\frac{1}{2} \dot{\phi}^{2}-V(\phi)\right)$ we rotate $t \rightarrow-i t$ to get $S \rightarrow i \int d t\left(\frac{1}{2} \dot{\phi}^{2}+V(\phi)\right)$ and get $S_{E}=$ $\int d t\left(\frac{1}{2} \dot{\phi}^{2}+V(\phi)\right)$ which differs from the action by $V \rightarrow-V$ (the Lagrangian in Euclidean space is the original Hamiltonian). As we will discuss more, the classical trajectories in Euclidean space are thus related to tunneling. In the path integral, $e^{i S / \hbar} \rightarrow e^{-S_{E} / \hbar}$ and this illustrates that the $Z=\operatorname{Tr} e^{-\beta H}$ comes from Euclidean time with periodicity β. But the S_{θ} term behaves differently: the usual factor of i from the $d^{4} x$ cancels against an i from the $\epsilon^{\mu \nu \rho \sigma}$ contraction; this reflects the fact that the term is topological. The upshot is that the S_{θ} term has an explicit factor of i in S_{E}, so it is still an oscillating contribution to the Euclidean path integral; this is indeed needed for $\theta \rightarrow \theta+2 \pi$ to still hold.

Euclidean spacetime is $\sim \mathbf{R}^{4}$ and we can get finite action by requiring the gauge fields to approach pure gauge at infinity. We can think of infinity as S_{∞}^{3} and the pure gauge condition allows for non-trivial winding number $k \in \mathbf{Z}$. Here k is the instanton number and measured by the same winding number integral as n above - the different letter is because here it is associated with the Euclidean S_{∞}^{3} with a slightly different physical interpretation. It turns out that it is inconsistent to restrict to $k=0$ in the functional integral: we must take $[d A] \rightarrow \sum_{k=-\infty}^{\infty}[d A]_{k}$, where $\left[d A_{k}\right]$ is a sector with instanton number k. The sector with instanton number k has $\int c_{2}(F)=k$, and enters the path integral with a factor of $e^{i k \theta}$. When we connect back to Minkowski spacetime, the Euclidean configuration with instanton number k can be thought of as a tunneling process, between vacua at $t= \pm \infty$ with winding number $n_{ \pm}$with $n_{+}-n_{-}=k$.

- In Euclidean space, the Yang-Mills action becomes $S_{Y M}=+\frac{1}{2 g^{2}} \int d^{4} x \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}$ i.e. whereas $\mathcal{L}_{M} \sim \operatorname{Tr}\left(\vec{E}^{2}-\vec{B}^{2}\right)$, the Euclidean rotation gives $\mathcal{L}_{E} \sim \mathcal{H} \sim \operatorname{Tr}\left(\vec{E}^{2}+\vec{B}^{2}\right)$. In Minkowski space, $* *=-1$, e.g. $* F^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}$ has $\vec{E} \rightarrow \vec{B} \rightarrow-\vec{E}$, so doing it twice takes $\vec{E} \rightarrow-\vec{E}$ and $\vec{B} \rightarrow-\vec{B}$, i.e. $* * F_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} * F^{\mu \nu}=-F_{\mu \nu}$. In Euclidean space, $* *=+1$, e.g. $*$ takes $\vec{E} \leftrightarrow \vec{B}$, and so $* * F=F$. So

$$
S_{Y M}=\frac{1}{4 g^{2}} \int d^{4} x \operatorname{Tr}\left(F_{\mu \nu} \mp * F_{\mu \nu}\right)^{2} \pm \frac{1}{2 g^{2}} \int d^{4} x \operatorname{Tr} F_{\mu \nu} * F^{\mu \nu} \geq \frac{8 \pi^{2}}{g^{2}}|k|
$$

where the inequality is saturated if $F_{\mu \nu}= \pm * F_{\mu \nu}$ and configurations with a + sign are called instantons and have instanton number $k>0$, and configurations with a - sign
are called anti-instantons and have $k<0$. The instanton and anti-instanton minimize the action in their topological sector, and the action becomes $S_{Y M} \rightarrow S_{i n s t}=\frac{8 \pi^{2}}{g^{2}}|k|$. Since they minimize the action, they will automatically satisfy the EOM. Note that the EOM, $D^{\mu} F_{\mu \nu}=0$ is a second order differential equation for A_{μ}, and this solves it via instead the first order equations $F_{\mu \nu}= \pm * F_{\mu \nu}$, roughly similar to the Hamiltonian EOM. $F_{\mu \nu}= \pm * F_{\mu \nu}$ requires $* *=1$, so it does not have an analog in Minkowski spacetime. The above is a special case of something that was studied by Bogomol'nyi Prasad Sommerfield, and the inequality is called a BPS bound. Note that $e^{-S} \rightarrow e^{-8 \pi^{2}|k| / g^{2}+i \theta k}$, which shows that the instanton contributions are non-perturbative - they do not show up in a Taylor series in g^{2}.

- Instantons are associated with classical solutions of the Euclidean EOM. Such solutions correspond to tunneling processes. Let's briefly illustrate this with QM. Recommended reading: Coleman's lecture on The Uses of Instantons, in Aspects of Symmetry. Consider QM with $H=\frac{1}{2} p^{2}+V(x)$. If there is a potential barrier region with $V(x)>E$, the WKB approximation gives a transmission amplitude $|T(E)| \approx e^{-B}$ with $B=\int_{x_{1}}^{x_{2}} d x \sqrt{2 m(V-E) /} \hbar$. This is a stationary path of the Euclidean path integral.

A classic example is QM with a double well potential: $V=\lambda\left(x^{2}-a^{2}\right)^{2}$. It has a Z_{2} symmetry, $x \rightarrow-x$, and the classical minima are at $x= \pm a$. This looks like spontaneous symmetry breaking of Z_{2}. But quantum effects - the tunneling - actually restore the Z_{2} symmetry. There is a theorem that QM (aka QFT in $0+1$ dimensions) does not admit spontaneous symmetry breaking. There is a similar theorem (Coleman; Mermin-Wagner; Hohenberg)) that QFT in $d=2$ does not admit spontaneous breaking of continuous symmetry (discrete breaking is possible in $d=2$). If the double well barrier height is very large compared with E_{0}, here are approximate groundstates given by the usual SHO groundstate for each well, centered at the minimum, i.e. $|L\rangle$ and $|R\rangle$. Thanks to tunneling, the groundstate is non-degenerate, as usual and expected, and given approximately by $|+\rangle$, and the state $|-\rangle$ has slightly higher energy, where $| \pm\rangle=\frac{1}{\sqrt{2}}(|L\rangle \pm|R\rangle)$ have parity ± 1, with $E_{ \pm}=E_{0} \mp K e^{-B}$, where K is a calculable constant.

In the Euclidean path integral, the extremal tunneling solution comes from extrema of the classical Euclidean action. In the double well example, the classical minima at $x= \pm a$ become local maxima when $V \rightarrow-V$. There is then a classical solution that connects $|-a,-T / 2\rangle$ to $\langle a, T / 2|$. Taking $T \rightarrow \infty$, we need $E=0$ so $\dot{\bar{x}}=\sqrt{2 V}$ and $x(t) \approx a-e^{-\omega t}$. This is the instanton (because it is like a soliton but in (Euclidean) time, so it is a lump at an instant) configuration. The configuration going from a to $-a$ is called an anti-instanton.

For the case $V=\lambda\left(x^{2}-a^{2}\right)^{2}$, the instanton solution is $\bar{x}(t)=a \tanh \left(\frac{1}{2} \omega\left(t-t_{0}\right)\right)$ where $\omega=2 a \sqrt{2 \lambda / m}$ and t_{0} is an example of a zero-mode of the solution, which is expected because of the time translation invariance.

