
215c, 4/20/20 Lecture outline. c© Kenneth Intriligator 2020.

⋆ Week 4 reading: Tong chapter 2.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Recall from last time that in A0 = 0 gauge Sθ = θ
∫

dt∂0W [A] where W [ ~A] =
1

8π2

∫

d3xǫijkTr(Ai∂jAk − 2i
3
AiAjAk) is gauge invariant under ~A→ U( ~A+ i ~∇)U−1 up to

shifts by n[U ] ∈ Z which measures π3(G) from R3|t=const + {·∞} ∼= S3 → U . In A0 = 0

gauge, L = − 1
2g2TrF

µνFµν + θ
16π2Tr

∗FµνFµν gives

L =
1

g2
Tr( ~̇A2 − ~B2) +

θ

4π
Tr ~̇A · ~B,

so ~Π = ∂L
∂ ~̇A

= g−2 ~E+ θ
8π2

~B and H = g−2Tr( ~E2+ ~B2) = g2Tr(~Π− θ
8π2

~B)2+g−2Tr ~B2. Even

though we take A0 = 0, we still need to impose the EOM for A0, which gives a non-Abelian

version of Gauss’ law, DiEi = 0. As usual In QFT we do not impose EOMs as operator

equations, but just that it holds for on-shell physical states, so DiEi|physical〉 = 0. The

Hilbert space includes non-gauge invariant states, and Gauss’ law is equivalent to the

condition that the physical states should be charge neutral.

• The effect of the θ term is similar to the θ term that we saw for QM with magnetic

flux inside. There were two ways to see it: we could either takeH = 1
2mR2 (−i∂φ+ θ

2π
)2 and

impose ψ(φ+2π) = ψ(φ), or we could try to eliminate θ by something that is roughly just

a gauge transformation ψ′ = eiθφ/2π and then H = 1
2mR2 (−i∂φ)2, but then ψ(φ + 2π) =

eiθψ(φ) has twisted boundary conditions. This shows that θ ∼ θ + 2π. Likewise, there

are two equivalent ways to see the θ parameter in gauge theories. Consider the functional

Ψ( ~A) = 〈 ~A|Ψ〉. We can then take ~Π → −i δ

δ ~A
and write a SE with the H above, which

involves θ. Alternatively, we can consider Ψ′( ~A) = eiθW [ ~A]Ψ( ~A), which eliminates the θ

term in the SE, but Ψ′ satisfies twisted boundary conditions: Ψ′(A) → einθΨ(A) under

a large gauge transformation with π3(G) winding n. This shows that θ ∼ θ + 2π. Aside:

there are some interesting fine points that are being glossed over here. For example, there

are different version of su(N) Yang-Mills that differ in global observables – Wilson and ’t

Hooft lines – e.g. su(N) which has θ ∼ θ + 2π vs su(N)/ZN which has θ ∼ θ + 2πN ; see

Tong’s notes for a nice discussion and details. In terms of the Standard Model, the group

is su(3)C×su(2)W ×u(1)Y /Γ were Γ could be 1, Z2, Z3, or Z6; again, see Tong for details.

These could be a good topics for your final presentation.

• The θ term multiples the instanton density, which is best understood in Euclidean

spacetime. We discussed the Euclidean Wick rotation in 215a. Recall that the Feynman
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propagator goes above the ωk pole and below the −ωk pole and that we can thus rotate

k0 → e+iαk0 with 0 ≤ α ≤ π/2 to make the integral go up the imaginary axis, so k0 →
+ik0, and x0 should rotate oppositely (to keep the FT well defined), x0 → −ix0. The

Euclidean action is then −i times the continuation of the Minkowski action, e.g. starting

with S =
∫

dt( 12 φ̇
2−V (φ)) we rotate t→ −it to get S → i

∫

dt( 12 φ̇
2+V (φ)) and get SE =

∫

dt( 12 φ̇
2 + V (φ)) which differs from the action by V → −V (the Lagrangian in Euclidean

space is the original Hamiltonian). As we will discuss more, the classical trajectories in

Euclidean space are thus related to tunneling. In the path integral, eiS/h̄ → e−SE/h̄ and

this illustrates that the Z = Tre−βH comes from Euclidean time with periodicity β. But

the Sθ term behaves differently: the usual factor of i from the d4x cancels against an i

from the ǫµνρσ contraction; this reflects the fact that the term is topological. The upshot

is that the Sθ term has an explicit factor of i in SE , so it is still an oscillating contribution

to the Euclidean path integral; this is indeed needed for θ → θ + 2π to still hold.

Euclidean spacetime is ∼ R4 and we can get finite action by requiring the gauge fields

to approach pure gauge at infinity. We can think of infinity as S3
∞ and the pure gauge

condition allows for non-trivial winding number k ∈ Z. Here k is the instanton number and

measured by the same winding number integral as n above – the different letter is because

here it is associated with the Euclidean S3
∞ with a slightly different physical interpretation.

It turns out that it is inconsistent to restrict to k = 0 in the functional integral: we must

take [dA] →
∑∞

k=−∞[dA]k, where [dAk] is a sector with instanton number k. The sector

with instanton number k has
∫

c2(F ) = k, and enters the path integral with a factor of

eikθ. When we connect back to Minkowski spacetime, the Euclidean configuration with

instanton number k can be thought of as a tunneling process, between vacua at t = ±∞
with winding number n± with n+ − n− = k.

• In Euclidean space, the Yang-Mills action becomes SYM = + 1
2g2

∫

d4xTrFµνF
µν

i.e. whereas LM ∼ Tr( ~E2 − ~B2), the Euclidean rotation gives LE ∼ H ∼ Tr( ~E2 + ~B2). In

Minkowski space, ∗∗ = −1, e.g. ∗Fµν = 1
2 ǫ

µνρσFρσ has ~E → ~B → −~E, so doing it twice

takes ~E → −~E and ~B → − ~B, i.e. ∗ ∗ Fµν = 1
2 ǫµνρσ ∗ Fµν = −Fµν . In Euclidean space,

∗∗ = +1, e.g. ∗ takes ~E ↔ ~B, and so ∗ ∗ F = F . So

SYM =
1

4g2

∫

d4xTr(Fµν ∓ ∗Fµν)
2 ± 1

2g2

∫

d4xTrFµν ∗ Fµν ≥ 8π2

g2
|k|,

where the inequality is saturated if Fµν = ± ∗ Fµν and configurations with a + sign are

called instantons and have instanton number k > 0, and configurations with a − sign

2



are called anti-instantons and have k < 0. The instanton and anti-instanton minimize

the action in their topological sector, and the action becomes SYM → Sinst = 8π2

g2 |k|.
Since they minimize the action, they will automatically satisfy the EOM. Note that the

EOM, DµFµν = 0 is a second order differential equation for Aµ, and this solves it via

instead the first order equations Fµν = ±∗Fµν , roughly similar to the Hamiltonian EOM.

Fµν = ±∗Fµν requires ∗∗ = 1, so it does not have an analog in Minkowski spacetime. The

above is a special case of something that was studied by Bogomol’nyi Prasad Sommerfield,

and the inequality is called a BPS bound. Note that e−S → e−8π2|k|/g2+iθk, which shows

that the instanton contributions are non-perturbative – they do not show up in a Taylor

series in g2.

• Instantons are associated with classical solutions of the Euclidean EOM. Such so-

lutions correspond to tunneling processes. Let’s briefly illustrate this with QM. Recom-

mended reading: Coleman’s lecture on The Uses of Instantons, in Aspects of Symme-

try. Consider QM with H = 1
2p

2 + V (x). If there is a potential barrier region with

V (x) > E, the WKB approximation gives a transmission amplitude |T (E)| ≈ e−B with

B =
∫ x2

x1

dx
√

2m(V − E)/h̄. This is a stationary path of the Euclidean path integral.

A classic example is QM with a double well potential: V = λ(x2 − a2)2. It has a Z2

symmetry, x → −x, and the classical minima are at x = ±a. This looks like spontaneous

symmetry breaking of Z2. But quantum effects – the tunneling – actually restore the Z2

symmetry. There is a theorem that QM (aka QFT in 0 + 1 dimensions) does not admit

spontaneous symmetry breaking. There is a similar theorem (Coleman; Mermin-Wagner;

Hohenberg)) that QFT in d = 2 does not admit spontaneous breaking of continuous

symmetry (discrete breaking is possible in d = 2). If the double well barrier height is

very large compared with E0, here are approximate groundstates given by the usual SHO

groundstate for each well, centered at the minimum, i.e. |L〉 and |R〉. Thanks to tunneling,

the groundstate is non-degenerate, as usual and expected, and given approximately by |+〉,
and the state |−〉 has slightly higher energy, where |±〉 = 1√

2
(|L〉 ± |R〉) have parity ±1,

with E± = E0 ∓Ke−B , where K is a calculable constant.

In the Euclidean path integral, the extremal tunneling solution comes from extrema of

the classical Euclidean action. In the double well example, the classical minima at x = ±a
become local maxima when V → −V . There is then a classical solution that connects

| − a,−T/2〉 to 〈a, T/2|. Taking T → ∞, we need E = 0 so ˙̄x =
√
2V and x(t) ≈ a− e−ωt.

This is the instanton (because it is like a soliton but in (Euclidean) time, so it is a lump at

an instant) configuration. The configuration going from a to −a is called an anti-instanton.
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For the case V = λ(x2 − a2)2, the instanton solution is x̄(t) = a tanh( 12ω(t − t0)) where

ω = 2a
√

2λ/m and t0 is an example of a zero-mode of the solution, which is expected

because of the time translation invariance.
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