215¢, 4/20/20 Lecture outline. © Kenneth Intriligator 2020.
* Week 4 reading: Tong chapter 2.
http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

e Recall from last time that in Ag = 0 gauge Sp = 0 [ dtdyW[A] where WA =
# [ d3xe*Tr(A;0;Ax, — %AiAjAk) is gauge invariant under A — U(A +iV)U ™! up to
shifts by n[U] € Z which measures 73(G) from R3|i—const + {00} = 5% = U. In 49 =0
gauge, £ = —2—;2TrFWFW + LS Te* FRE,, gives
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so Il = §—§ =g 2E+ 5B and H = g ?Te(E*+ B2) = ¢*Tr(Il— g% B)? + g >TrB2. Even
though we take Ag = 0, we still need to impose the EOM for Ag, which gives a non-Abelian
version of Gauss’ law, D; F; = 0. As usual In QFT we do not impose EOMs as operator
equations, but just that it holds for on-shell physical states, so D;F;|physical) = 0. The
Hilbert space includes non-gauge invariant states, and Gauss’ law is equivalent to the
condition that the physical states should be charge neutral.

e The effect of the 8 term is similar to the 8 term that we saw for QM with magnetic
flux inside. There were two ways to see it: we could either take H = Wlm (—i0p+ %)2 and
impose (¢ + 27) = 1 (¢), or we could try to eliminate 6 by something that is roughly just
a gauge transformation ¢/ = €??/2™ and then H = ﬁ(—i&ﬁ)z, but then ¥ (¢ + 27) =
1) () has twisted boundary conditions. This shows that 6 ~ 6 + 27. Likewise, there

are two equivalent ways to see the 6 parameter in gauge theories. Consider the functional
U(A) = (A]V). We can then take Il — _ié%i and write a SE with the H above, which

involves . Alternatively, we can consider U/ (A4) = ewW[A]\IJ(fT), which eliminates the 6
term in the SE, but ¥’ satisfies twisted boundary conditions: ¥/(A) — ¢ W(A) under
a large gauge transformation with 73(G) winding n. This shows that 0 ~ 6 + 27. Aside:
there are some interesting fine points that are being glossed over here. For example, there
are different version of su(N) Yang-Mills that differ in global observables — Wilson and 't
Hooft lines — e.g. su(N) which has 8 ~ 0 + 27 vs su(N)/Zx which has § ~ 0 + 27 N; see
Tong’s notes for a nice discussion and details. In terms of the Standard Model, the group
is su(3)c x su(2)w xu(1l)y /T were I could be 1, Zs, Z3, or Zg; again, see Tong for details.
These could be a good topics for your final presentation.

e The # term multiples the instanton density, which is best understood in Euclidean

spacetime. We discussed the Euclidean Wick rotation in 215a. Recall that the Feynman
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propagator goes above the wy pole and below the —wy pole and that we can thus rotate
ko — et®kg with 0 < o < m/2 to make the integral go up the imaginary axis, so kg —
+ikg, and z( should rotate oppositely (to keep the FT well defined), zop — —izg. The
Euclidean action is then —i times the continuation of the Minkowski action, e.g. starting
with S = [ dt(2¢? —V(¢)) we rotate t — —it to get S — i [ dt(1* +V(¢)) and get Sp =
i dt(%d)z + V(¢)) which differs from the action by V' — —V (the Lagrangian in Euclidean
space is the original Hamiltonian). As we will discuss more, the classical trajectories in
Euclidean space are thus related to tunneling. In the path integral, e?*/" — ¢=58/" and
this illustrates that the Z = Tre ?H comes from Euclidean time with periodicity 5. But
the Sp term behaves differently: the usual factor of i from the d*z cancels against an i
from the e*¥P? contraction; this reflects the fact that the term is topological. The upshot
is that the Sy term has an explicit factor of ¢ in Sg, so it is still an oscillating contribution
to the Euclidean path integral; this is indeed needed for 8 — 6 + 27 to still hold.

Euclidean spacetime is ~ R* and we can get finite action by requiring the gauge fields
to approach pure gauge at infinity. We can think of infinity as S2, and the pure gauge
condition allows for non-trivial winding number k£ € Z. Here k is the instanton number and
measured by the same winding number integral as n above — the different letter is because
here it is associated with the Euclidean S2 with a slightly different physical interpretation.
It turns out that it is inconsistent to restrict to k = 0 in the functional integral: we must
take [dA] — >"o— _ [dA]k, where [dA] is a sector with instanton number k. The sector
with instanton number k has [co(F) = k, and enters the path integral with a factor of
e’*?. When we connect back to Minkowski spacetime, the Euclidean configuration with
instanton number k£ can be thought of as a tunneling process, between vacua at t = +o0
with winding number ny with ny —n_ = k.

e In Euclidean space, the Yang-Mills action becomes Sy = -l-# [ d*xTxF,, Fr
i.e. whereas £y ~ Tr(E2 — B2), the Euclidean rotation gives Lg ~ H ~ Tr(E? + B?). In
Minkowski space, xx = —1, e.g. xFH* = %e“”p(’Fpg has E — B — —E, so doing it twice
takes E — —F and B — —g, ie. *xxF,, = %e“,,po. * MY = —F,,. In Euclidean space,
xk = +1, e.g. *takesﬁﬁg, and so xx F' = F. So

1 1 L _ 8m?
SYM = @ /d4.’13TI'<FHV + *FHV)Q + @ d4.’13TI'FHV x FH Z ?“{3‘,

where the inequality is saturated if F},,, = + * F},, and configurations with a + sign are

called instantons and have instanton number k£ > 0, and configurations with a — sign
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are called anti-instantons and have £ < 0. The instanton and anti-instanton minimize
the action in their topological sector, and the action becomes Sy — Sinst = 89%2|k|.
Since they minimize the action, they will automatically satisfy the EOM. Note that the
EOM, D*F,, = 0 is a second order differential equation for A,, and this solves it via
instead the first order equations F},,, = £ * F},,, roughly similar to the Hamiltonian EOM.
F,, = £ xF},, requires ** = 1, so it does not have an analog in Minkowski spacetime. The
above is a special case of something that was studied by Bogomol’'nyi Prasad Sommerfield,
and the inequality is called a BPS bound. Note that e™° — 6_8”2|k|/92+wk, which shows
that the instanton contributions are non-perturbative — they do not show up in a Taylor
series in g2.

e Instantons are associated with classical solutions of the Euclidean EOM. Such so-
lutions correspond to tunneling processes. Let’s briefly illustrate this with QM. Recom-
mended reading: Coleman’s lecture on The Uses of Instantons, in Aspects of Symme-
try. Consider QM with H = %pz + V(x). If there is a potential barrier region with
V(x) > E, the WKB approximation gives a transmission amplitude |T(FE)| ~ e~ B with
B = f;f dx\/m h. This is a stationary path of the Euclidean path integral.

A classic example is QM with a double well potential: V = X(z? — a?)?. It has a Z
symmetry, x — —x, and the classical minima are at * = +a. This looks like spontaneous
symmetry breaking of Z5. But quantum effects — the tunneling — actually restore the Zs
symmetry. There is a theorem that QM (aka QFT in 0 + 1 dimensions) does not admit
spontaneous symmetry breaking. There is a similar theorem (Coleman; Mermin-Wagner;
Hohenberg)) that QFT in d = 2 does not admit spontaneous breaking of continuous
symmetry (discrete breaking is possible in d = 2). If the double well barrier height is
very large compared with Ej, here are approximate groundstates given by the usual SHO
groundstate for each well, centered at the minimum, i.e. |L) and |R). Thanks to tunneling,
the groundstate is non-degenerate, as usual and expected, and given approximately by |+),
and the state |—) has slightly higher energy, where |+) = %(|L) + |R)) have parity +1,
with By = Ey F Ke B, where K is a calculable constant.

In the Euclidean path integral, the extremal tunneling solution comes from extrema of
the classical Euclidean action. In the double well example, the classical minima at x = +a
become local maxima when V' — —V. There is then a classical solution that connects
| —a,—T/2) to (a,T/2|. Taking T — oo, we need E = 0 so z = v/2V and z(t) ~ a — e~ “".
This is the instanton (because it is like a soliton but in (Euclidean) time, so it is a lump at

an instant) configuration. The configuration going from a to —a is called an anti-instanton.
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For the case V = A(2? — a?)?, the instanton solution is Z(t) = atanh(3w(t — o)) where
w = 2a,/2\/m and ty is an example of a zero-mode of the solution, which is expected

because of the time translation invariance.



