215¢, 4/22/20 Lecture outline. (© Kenneth Intriligator 2020.
* Week 4 reading: Tong chapter 2.
http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

e Last time: quantum effects can dramatically alter classical results. An example
is the double well V(z) = X(z? — a?)? in QM, where classically the Zy symmetry is
spontaneously broken, but quantumly it is restored thanks to tunneling. This will be
discussed as a warmup for our case of interest, showing that although classically vacua
have a choice of the winding number n in space, quantumly we must sum over them be-
cause of tunneling. We can roughly think about having classical vacua |n) and quan-
tum tunneling transition configurations T} such that (n + k|Tx|n) # 0. Instead the
vacua are labelled by |8) = Y77 _ e™|n) with § a good quantum number (in that
(0'le=tHt0) = 216(0" — 0) >, 0 (k|e~*H!|0) ~ 5(6' — 6)). The path integral, [dA,] has
to include all of the 73(G) = Z topological winding sectors k and e**® comes from the Sy
term, e™*? (ke H|0) = [[dA,]e!Sy M+matter 50,

Tunneling can be seen from classical solutions of the Euclidean theory’s EOM, and
these are called instantons or anti-instantons. For Euclidean Yang-Mills, these are the
solutions of F),, = +xF},, and they have Sy — Sinst = 89%2|k| and e=S — e=87°Ikl/g*+i0k
Mention another example: pair production of charged particles from the vacuum by an
external electric field; again, this can be as patching into Minkowski spacetime a classical
solution of the Euclidean EOM, which looks like a charged particle moving in a circle.

e Continue with the QM double well, V = A(z? — a?)? and noting that, although
the classical groundstate spontaneously breaks the Z5, quantum tunneling restores it:
|£) = %(|L) + |R)) have parity +1, with B4 = Ey F Ke P, where K is a calculable
constant. In the Euclidean path integral, the extremal tunneling solution comes from
extrema of the classical Euclidean action. In the double well example, the classical min-
ima at * = £a become local maxima when V' — —V. There is then a classical solu-
tion that connects | — a, —7/2) to (a,T/2|. The Euclidean version of the path integral
gives K(zs,T/2;2:,—T/2) = (wfle  HT/"|z,) = N [[dz]e=5/". Taking H|n) = E,|n), get
S e EnT/Mx tIn) (n|z;). We will be interested in large 7', and then the sum is dominated
by the states of lowest energy.

Evaluate the path integral by the usual method of time-slicing and approximating with
a gaussian around the stationary path — which now is the instanton solution Z(t) of the

classical Euclidean EOM, i.e. the motion with V' — =V, so E = 1(%)>—V/(z) is a constant
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of the motion. Taking T — oo, we need E = 050 z = v/2V and Z(t) ~ a—e~“*. For the case
V = XMa? — a?)?, the instanton solution is Z(¢) = atanh(3w(t —t)) where w = 2a\/2\/m
and % is an example of a zero-mode of the solution, which is expected because of the time
translation invariance. The configuration going from a to —a is called an anti-instanton.
The instanton’s action is Sjnst = fdt(%i‘Q +V) = [dti* = [?, dz/2V. So the Euclidean
path integral approximation will give e,g, (ale 77| —a) = N f;((oj;):_aa [dz(t)]e=5=[=®)] and
we take z(t) = Z(t) + 0z(t) to get Sgp = Sinst + [ dTdzAdx + O(6x3) so get for the path

integral ~ fOT dtgJe Sins with J a Jacobian determinant. The factor of e~ Sinst/h
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reproduces the familiar barrier penetration transmission amplitude coefficient |T'(E)| =

exp(—¢ flz dz\/2(V — E))(1 4+ O(h)). Recall that the perturbative loop expansion is an
expansion in powers of &, whereas this effect is ~ e~inst/" which does not have a Taylor
expansion in i — it is non-perturbative.

There are a couple of technical subtleties that require care: the zero mode %y is a
zero eigenvector of the operator in the determinant above, and has to be eliminated from
the determinant and treated separately, as a “collective coordinate”: it is treated as a
quantum variable which, together with conjugate momentum is quantized. In the path
integral description, we need to integrate over these collective coordinates. Also, there is
not just a single instanton contribution but, instead, we need to sum over a dilute gas of
instantons and anti-instantons, e.g. instead of just —a — a, there is —a — a — —a — a
etc. This leads to a series that can be summed. See Coleman’s lectures and Tong’s notes
for more details. This could be a topic for a final presentation. The upshot is that the

dilute instanton sum gives

w

(ale™ T/ —a) = §(2) 26T P exp(Ke~ 5/ T) F exp(~ K™%/ T)),

7h

where the exp comes from the instanton dilute gas sum over even or odd numbers of
instantons. Compare with (+ale™#7/%| —a) = 3 e EnT/"(La|n)(n| — a) to read off the
energies of the two low-lying states, £ =~ %hw T hKKe 5/" where Ey are the energy of
the parity even and odd eigenstates.

e The basic instanton of an su(2) gauge theory solves F),,, = *F},, with A,|, 00 —
iU0,U~" where U has winding number k = 1, e.g. U = z,0t/Va? with o# = (1, —id).

This leads to A,(x) = %. The nzw = —nfju are called 't Hooft matrices and given
e.g. by niy = ni, = 1 = —nd; = —nl; (with other components zero), n3; = ni, = 1

(antisymmetrized, with others zero), and 73, = n3; = 1 (antisymmetrized, others zero).
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The n® form a representation (the adjoint) of SU(2), and are self-dual (it’s the adjoint
rep), 05, = *1;,. If we think of the Euclidean rotation group as SU(2)r x SU(2)g, the
A}, map SU(2)r, = SU(2)gauge and preserve a SU(2)r4gauge diagonal subgroup — these
give 3 Euler angle rotational zero modes of where a point in the S® maps to a point in G.

There are spacetime translation invariance zero modes: we can replace z# — z# — xf
where zf is the spacetime location of the instanton. The parameter p gives the instanton
size. It is a another zero mode because the classical equations are scale invariant. The
su(2) rotations give 3 more zero modes. All together the single instanton of su(2) has 8
zero modes; for su(N) and instanton number k this becomes 4Nk. There is a lot more
physics that could be discussed, and also connections to math.

The p collective coordinate needs to be integrated over, and this generally leads to IR
divergences at large p. For some modified theories (e.g. if su(2) is spontaneously broken
to a u(1) subgroup or completely broken) or modified quantities (higher-point correlation
functions), the p integral becomes convergent and peaked at finite sized instantons, which
helps to justify a dilute instanton gas approach. In other cases, the breakdown of the
instanton approach reveals that it is not a good approximation to the path integral.

Let |0) denote a state with a given value of the 6 angle, and it could be with § = (ga)
where a is the axion and ¢ is some dimensionful coupling. Then in the dilute gas approxi-
mation where we sum over n instantons and n anti-instantons, in a finite spacetime box of
Euclidean volume VT, they contribute (f|e=#7|0) ~ Zn’ﬁ(Ke_SO VT)ntnein=1)0 /nlpl =
exp(2KVTe %0 cosf), so E(0)/V = —2K cos fe™5°, which lifts the perturbative degener-
acy of the 6 vacua, preserving of course 6 ~ 6 4 27.

next time:

e Briefly mention pair creation in an external electric field. E.g. Schwinger cal-

culated in 1951that the probability of pair creating particles of mass m and charge q

in an external electric field F is P = 1 — e™ "V where v (technically for spin 0) is
=3 %e‘”m%”qm. Affleck, Alvarez, and Manton (1982) found a much

simpler rederivation of this result using instantons and the worldline path integral for
the charged particle in an external field: the electric field in Euclidean space resembles
a magnetic field and the classical motion in a constant electric field E = EZ? is circular,
similar to a cyclotron orbit in the (z,z4) FEuclidean plane, with radius m/qFE. The solu-
tion represents tunneling between the vacuum with zero particles and the vacuum with a

particle-antiparticle pair. This could also be a nice topic for a final presentation.



