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⋆ Week 4 reading: Tong chapter 2.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Last time: quantum effects can dramatically alter classical results. An example

is the double well V (x) = λ(x2 − a2)2 in QM, where classically the Z2 symmetry is

spontaneously broken, but quantumly it is restored thanks to tunneling. This will be

discussed as a warmup for our case of interest, showing that although classically vacua

have a choice of the winding number n in space, quantumly we must sum over them be-

cause of tunneling. We can roughly think about having classical vacua |n〉 and quan-

tum tunneling transition configurations Tk such that 〈n + k|Tk|n〉 6= 0. Instead the

vacua are labelled by |θ〉 =
∑∞

k=−∞ eikθ|n〉 with θ a good quantum number (in that

〈θ′|e−iHtθ〉 = 2πδ(θ′ − θ)
∑

k e
ikθ〈k|e−iHt|0〉 ∼ δ(θ′ − θ)). The path integral, [dAµ] has

to include all of the π3(G) = Z topological winding sectors k and eikθ comes from the Sθ

term, eikθ〈k|e−iHt|0〉 =
∫

[dAµ]e
iSY M+matter+iθSθ .

Tunneling can be seen from classical solutions of the Euclidean theory’s EOM, and

these are called instantons or anti-instantons. For Euclidean Yang-Mills, these are the

solutions of Fµν = ±∗Fµν and they have SYM → Sinst =
8π2

g2 |k| and e−S → e−8π2|k|/g2+iθk.

Mention another example: pair production of charged particles from the vacuum by an

external electric field; again, this can be as patching into Minkowski spacetime a classical

solution of the Euclidean EOM, which looks like a charged particle moving in a circle.

• Continue with the QM double well, V = λ(x2 − a2)2 and noting that, although

the classical groundstate spontaneously breaks the Z2, quantum tunneling restores it:

|±〉 = 1√
2
(|L〉 ± |R〉) have parity ±1, with E± = E0 ∓ Ke−B , where K is a calculable

constant. In the Euclidean path integral, the extremal tunneling solution comes from

extrema of the classical Euclidean action. In the double well example, the classical min-

ima at x = ±a become local maxima when V → −V . There is then a classical solu-

tion that connects | − a,−T/2〉 to 〈a, T/2|. The Euclidean version of the path integral

gives K(xf , T/2; xi,−T/2) = 〈xf |e−HT/h̄|xi〉 = N
∫

[dx]e−S/h̄. Taking H|n〉 = En|n〉, get
∑

n e−EnT/h̄〈xf |n〉〈n|xi〉. We will be interested in large T , and then the sum is dominated

by the states of lowest energy.

Evaluate the path integral by the usual method of time-slicing and approximating with

a gaussian around the stationary path – which now is the instanton solution x̄(t) of the

classical Euclidean EOM, i.e. the motion with V → −V , so E = 1
2( ˙̄x)

2−V (x) is a constant
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of the motion. Taking T → ∞, we need E = 0 so ˙̄x =
√
2V and x̄(t) ≈ a−e−ωt. For the case

V = λ(x2 − a2)2, the instanton solution is x̄(t) = a tanh( 12ω(t− t0)) where ω = 2a
√

2λ/m

and t0 is an example of a zero-mode of the solution, which is expected because of the time

translation invariance. The configuration going from a to −a is called an anti-instanton.

The instanton’s action is Sinst =
∫

dt( 12 ˙̄x
2
+ V ) =

∫

dtẋ2 =
∫ a

−a
dx

√
2V . So the Euclidean

path integral approximation will give e,g, 〈a|e−HT | − a〉 = N
∫ x(T )=a

x(0)=−a
[dx(t)]e−SE [x(t)] and

we take x(t) = x̄(t) + δx(t) to get SE = Sinst +
∫

dτδx∆δx +O(δx3) so get for the path

integral ≈
∫ T

0
dt0Je

−Sinst 1
det′ 1/2(∆)

with J a Jacobian determinant. The factor of e−Sinst/h̄

reproduces the familiar barrier penetration transmission amplitude coefficient |T (E)| =
exp(− 1

h̄

∫ x2

x1
dx

√

2(V − E))(1 +O(h̄)). Recall that the perturbative loop expansion is an

expansion in powers of h̄, whereas this effect is ∼ e−Sinst/h̄, which does not have a Taylor

expansion in h̄ – it is non-perturbative.

There are a couple of technical subtleties that require care: the zero mode t0 is a

zero eigenvector of the operator in the determinant above, and has to be eliminated from

the determinant and treated separately, as a “collective coordinate”: it is treated as a

quantum variable which, together with conjugate momentum is quantized. In the path

integral description, we need to integrate over these collective coordinates. Also, there is

not just a single instanton contribution but, instead, we need to sum over a dilute gas of

instantons and anti-instantons, e.g. instead of just −a → a, there is −a → a → −a → a

etc. This leads to a series that can be summed. See Coleman’s lectures and Tong’s notes

for more details. This could be a topic for a final presentation. The upshot is that the

dilute instanton sum gives

〈±a|e−HT/h̄| − a〉 = 1
2(

ω

πh̄
)1/2e−ωT/2[exp(Ke−S0/h̄T )∓ exp(−Ke−S0/h̄T )],

where the exp comes from the instanton dilute gas sum over even or odd numbers of

instantons. Compare with 〈±a|e−HT/h̄| − a〉 = ∑

n e−EnT/h̄〈±a|n〉〈n| − a〉 to read off the

energies of the two low-lying states, E± ≈ 1
2
h̄ω ∓ h̄Ke−S0/h̄ where E± are the energy of

the parity even and odd eigenstates.

• The basic instanton of an su(2) gauge theory solves Fµν = ∗Fµν with Aµ|r→∞ →
iU∂µU

−1 where U has winding number k = 1, e.g. U = xµσ
µ/

√
x2 with σµ = (1,−i~σ).

This leads to Aµ(x) =
ηi
µνx

νσi

x2+ρ2 . The ηiµν = −ηiνµ are called ’t Hooft matrices and given

e.g. by η112 = η134 = 1 = −η121 = −η143 (with other components zero), η213 = η242 = 1

(antisymmetrized, with others zero), and η314 = η323 = 1 (antisymmetrized, others zero).
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The ηa form a representation (the adjoint) of SU(2), and are self-dual (it’s the adjoint

rep), ηaµν = ∗ηaµν . If we think of the Euclidean rotation group as SU(2)L × SU(2)R, the

Aa
µ map SU(2)L → SU(2)gauge and preserve a SU(2)L+gauge diagonal subgroup – these

give 3 Euler angle rotational zero modes of where a point in the S3 maps to a point in G.

There are spacetime translation invariance zero modes: we can replace xµ → xµ − xµ
0

where xµ
0 is the spacetime location of the instanton. The parameter ρ gives the instanton

size. It is a another zero mode because the classical equations are scale invariant. The

su(2) rotations give 3 more zero modes. All together the single instanton of su(2) has 8

zero modes; for su(N) and instanton number k this becomes 4Nk. There is a lot more

physics that could be discussed, and also connections to math.

The ρ collective coordinate needs to be integrated over, and this generally leads to IR

divergences at large ρ. For some modified theories (e.g. if su(2) is spontaneously broken

to a u(1) subgroup or completely broken) or modified quantities (higher-point correlation

functions), the ρ integral becomes convergent and peaked at finite sized instantons, which

helps to justify a dilute instanton gas approach. In other cases, the breakdown of the

instanton approach reveals that it is not a good approximation to the path integral.

Let |θ〉 denote a state with a given value of the θ angle, and it could be with θ = 〈ga〉
where a is the axion and g is some dimensionful coupling. Then in the dilute gas approxi-

mation where we sum over n instantons and n̄ anti-instantons, in a finite spacetime box of

Euclidean volume V T , they contribute 〈θ|e−HT |θ〉 ≈ ∑

n,n̄(Ke−S0V T )n+n̄ei(n−n̄)θ/n!n̄! =

exp(2KV Te−S0 cos θ), so E(θ)/V = −2K cos θe−S0 , which lifts the perturbative degener-

acy of the θ vacua, preserving of course θ ∼ θ + 2π.

next time:

• Briefly mention pair creation in an external electric field. E.g. Schwinger cal-

culated in 1951that the probability of pair creating particles of mass m and charge q

in an external electric field E is P = 1 − e−γV where γ (technically for spin 0) is

γ =
∑∞

n=1
(−1)n+1(qE)2

8π3n2 e−πm2n/|qE|. Affleck, Alvarez, and Manton (1982) found a much

simpler rederivation of this result using instantons and the worldline path integral for

the charged particle in an external field: the electric field in Euclidean space resembles

a magnetic field and the classical motion in a constant electric field ~E = Eẑ is circular,

similar to a cyclotron orbit in the (z, x4) Euclidean plane, with radius m/qE. The solu-

tion represents tunneling between the vacuum with zero particles and the vacuum with a

particle-antiparticle pair. This could also be a nice topic for a final presentation.
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