$215 \mathrm{c}, 4 / 22 / 20$ Lecture outline. (c) Kenneth Intriligator 2020.
\star Week 4 reading: Tong chapter 2.
http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

- Last time: quantum effects can dramatically alter classical results. An example is the double well $V(x)=\lambda\left(x^{2}-a^{2}\right)^{2}$ in QM, where classically the Z_{2} symmetry is spontaneously broken, but quantumly it is restored thanks to tunneling. This will be discussed as a warmup for our case of interest, showing that although classically vacua have a choice of the winding number n in space, quantumly we must sum over them because of tunneling. We can roughly think about having classical vacua $|n\rangle$ and quantum tunneling transition configurations T_{k} such that $\langle n+k| T_{k}|n\rangle \neq 0$. Instead the vacua are labelled by $|\theta\rangle=\sum_{k=-\infty}^{\infty} e^{i k \theta}|n\rangle$ with θ a good quantum number (in that $\left.\left\langle\theta^{\prime} \mid e^{-i H t} \theta\right\rangle=2 \pi \delta\left(\theta^{\prime}-\theta\right) \sum_{k} e^{i k \theta}\langle k| e^{-i H t}|0\rangle \sim \delta\left(\theta^{\prime}-\theta\right)\right)$. The path integral, [d A_{μ}] has to include all of the $\pi_{3}(G)=\mathbf{Z}$ topological winding sectors k and $e^{i k \theta}$ comes from the S_{θ} term, $e^{i k \theta}\langle k| e^{-i H t}|0\rangle=\int\left[d A_{\mu}\right] e^{i S_{Y M+\text { matter }}+i \theta S_{\theta}}$.

Tunneling can be seen from classical solutions of the Euclidean theory's EOM, and these are called instantons or anti-instantons. For Euclidean Yang-Mills, these are the solutions of $F_{\mu \nu}= \pm * F_{\mu \nu}$ and they have $S_{Y M} \rightarrow S_{\text {inst }}=\frac{8 \pi^{2}}{g^{2}}|k|$ and $e^{-S} \rightarrow e^{-8 \pi^{2}|k| / g^{2}+i \theta k}$. Mention another example: pair production of charged particles from the vacuum by an external electric field; again, this can be as patching into Minkowski spacetime a classical solution of the Euclidean EOM, which looks like a charged particle moving in a circle.

- Continue with the QM double well, $V=\lambda\left(x^{2}-a^{2}\right)^{2}$ and noting that, although the classical groundstate spontaneously breaks the Z_{2}, quantum tunneling restores it:
 constant. In the Euclidean path integral, the extremal tunneling solution comes from extrema of the classical Euclidean action. In the double well example, the classical minima at $x= \pm a$ become local maxima when $V \rightarrow-V$. There is then a classical solution that connects $|-a,-T / 2\rangle$ to $\langle a, T / 2|$. The Euclidean version of the path integral gives $K\left(x_{f}, T / 2 ; x_{i},-T / 2\right)=\left\langle x_{f}\right| e^{-H T / \hbar}\left|x_{i}\right\rangle=N \int[d x] e^{-S / \hbar}$. Taking $H|n\rangle=E_{n}|n\rangle$, get $\sum_{n} e^{-E_{n} T / \hbar}\left\langle x_{f} \mid n\right\rangle\left\langle n \mid x_{i}\right\rangle$. We will be interested in large T, and then the sum is dominated by the states of lowest energy.

Evaluate the path integral by the usual method of time-slicing and approximating with a gaussian around the stationary path - which now is the instanton solution $\bar{x}(t)$ of the classical Euclidean EOM, i.e. the motion with $V \rightarrow-V$, so $E=\frac{1}{2}(\dot{\bar{x}})^{2}-V(x)$ is a constant
of the motion. Taking $T \rightarrow \infty$, we need $E=0$ so $\dot{\bar{x}}=\sqrt{2 V}$ and $\bar{x}(t) \approx a-e^{-\omega t}$. For the case $V=\lambda\left(x^{2}-a^{2}\right)^{2}$, the instanton solution is $\bar{x}(t)=a \tanh \left(\frac{1}{2} \omega\left(t-t_{0}\right)\right)$ where $\omega=2 a \sqrt{2 \lambda / m}$ and t_{0} is an example of a zero-mode of the solution, which is expected because of the time translation invariance. The configuration going from a to $-a$ is called an anti-instanton. The instanton's action is $S_{\text {inst }}=\int d t\left(\frac{1}{2} \dot{\bar{x}}^{2}+V\right)=\int d t \dot{x}^{2}=\int_{-a}^{a} d x \sqrt{2 V}$. So the Euclidean path integral approximation will give e, $\mathrm{g},\langle a| e^{-H T}|-a\rangle=N \int_{x(0)=-a}^{x(T)=a}[d x(t)] e^{-S_{E}[x(t)]}$ and we take $x(t)=\bar{x}(t)+\delta x(t)$ to get $S_{E}=S_{\text {inst }}+\int d \tau \delta x \Delta \delta x+\mathcal{O}\left(\delta x^{3}\right)$ so get for the path integral $\approx \int_{0}^{T} d t_{0} J e^{-S_{\text {inst }}} \frac{1}{\operatorname{det}^{\prime 1 / 2}(\Delta)}$ with J a Jacobian determinant. The factor of $e^{-S_{\text {inst }} / \hbar}$ reproduces the familiar barrier penetration transmission amplitude coefficient $|T(E)|=$ $\exp \left(-\frac{1}{\hbar} \int_{x_{1}}^{x_{2}} d x \sqrt{2(V-E)}\right)(1+\mathcal{O}(\hbar))$. Recall that the perturbative loop expansion is an expansion in powers of \hbar, whereas this effect is $\sim e^{-S_{\text {inst }} / \hbar}$, which does not have a Taylor expansion in \hbar - it is non-perturbative.

There are a couple of technical subtleties that require care: the zero mode t_{0} is a zero eigenvector of the operator in the determinant above, and has to be eliminated from the determinant and treated separately, as a "collective coordinate": it is treated as a quantum variable which, together with conjugate momentum is quantized. In the path integral description, we need to integrate over these collective coordinates. Also, there is not just a single instanton contribution but, instead, we need to sum over a dilute gas of instantons and anti-instantons, e.g. instead of just $-a \rightarrow a$, there is $-a \rightarrow a \rightarrow-a \rightarrow a$ etc. This leads to a series that can be summed. See Coleman's lectures and Tong's notes for more details. This could be a topic for a final presentation. The upshot is that the dilute instanton sum gives

$$
\langle \pm a| e^{-H T / \hbar}|-a\rangle=\frac{1}{2}\left(\frac{\omega}{\pi \hbar}\right)^{1 / 2} e^{-\omega T / 2}\left[\exp \left(K e^{-S_{0} / \hbar} T\right) \mp \exp \left(-K e^{-S_{0} / \hbar} T\right)\right]
$$

where the exp comes from the instanton dilute gas sum over even or odd numbers of instantons. Compare with $\langle \pm a| e^{-H T / \hbar}|-a\rangle=\sum_{n} e^{-E_{n} T / \hbar}\langle \pm a \mid n\rangle\langle n \mid-a\rangle$ to read off the energies of the two low-lying states, $E_{ \pm} \approx \frac{1}{2} \hbar \omega \mp \hbar K e^{-S_{0} / \hbar}$ where $E_{ \pm}$are the energy of the parity even and odd eigenstates.

- The basic instanton of an $s u(2)$ gauge theory solves $F_{\mu \nu}=* F_{\mu \nu}$ with $\left.A_{\mu}\right|_{r \rightarrow \infty} \rightarrow$ $i U \partial_{\mu} U^{-1}$ where U has winding number $k=1$, e.g. $U=x_{\mu} \sigma^{\mu} / \sqrt{x^{2}}$ with $\sigma^{\mu}=(1,-i \vec{\sigma})$. This leads to $A_{\mu}(x)=\frac{\eta_{\mu \nu}^{i} x^{\nu} \sigma^{i}}{x^{2}+\rho^{2}}$. The $\eta_{\mu \nu}^{i}=-\eta_{\nu \mu}^{i}$ are called 't Hooft matrices and given e.g. by $\eta_{12}^{1}=\eta_{34}^{1}=1=-\eta_{21}^{1}=-\eta_{43}^{1}$ (with other components zero), $\eta_{13}^{2}=\eta_{42}^{2}=1$ (antisymmetrized, with others zero), and $\eta_{14}^{3}=\eta_{23}^{3}=1$ (antisymmetrized, others zero).

The η^{a} form a representation (the adjoint) of $S U(2)$, and are self-dual (it's the adjoint rep), $\eta_{\mu \nu}^{a}=* \eta_{\mu \nu}^{a}$. If we think of the Euclidean rotation group as $S U(2)_{L} \times S U(2)_{R}$, the A_{μ}^{a} map $S U(2)_{L} \rightarrow S U(2)_{\text {gauge }}$ and preserve a $S U(2)_{L+g a u g e}$ diagonal subgroup - these give 3 Euler angle rotational zero modes of where a point in the S^{3} maps to a point in G.

There are spacetime translation invariance zero modes: we can replace $x^{\mu} \rightarrow x^{\mu}-x_{0}^{\mu}$ where x_{0}^{μ} is the spacetime location of the instanton. The parameter ρ gives the instanton size. It is a another zero mode because the classical equations are scale invariant. The $s u(2)$ rotations give 3 more zero modes. All together the single instanton of $s u(2)$ has 8 zero modes; for $s u(N)$ and instanton number k this becomes $4 N k$. There is a lot more physics that could be discussed, and also connections to math.

The ρ collective coordinate needs to be integrated over, and this generally leads to IR divergences at large ρ. For some modified theories (e.g. if $s u(2)$ is spontaneously broken to a $u(1)$ subgroup or completely broken) or modified quantities (higher-point correlation functions), the ρ integral becomes convergent and peaked at finite sized instantons, which helps to justify a dilute instanton gas approach. In other cases, the breakdown of the instanton approach reveals that it is not a good approximation to the path integral.

Let $|\theta\rangle$ denote a state with a given value of the θ angle, and it could be with $\theta=\langle g a\rangle$ where a is the axion and g is some dimensionful coupling. Then in the dilute gas approximation where we sum over n instantons and \bar{n} anti-instantons, in a finite spacetime box of Euclidean volume $V T$, they contribute $\langle\theta| e^{-H T}|\theta\rangle \approx \sum_{n, \bar{n}}\left(K e^{-S_{0}} V T\right)^{n+\bar{n}} e^{i(n-\bar{n}) \theta} / n!\bar{n}!=$ $\exp \left(2 K V T e^{-S_{0}} \cos \theta\right)$, so $E(\theta) / V=-2 K \cos \theta e^{-S_{0}}$, which lifts the perturbative degeneracy of the θ vacua, preserving of course $\theta \sim \theta+2 \pi$.
next time:

- Briefly mention pair creation in an external electric field. E.g. Schwinger calculated in 1951that the probability of pair creating particles of mass m and charge q in an external electric field E is $P=1-e^{-\gamma V}$ where γ (technically for spin 0) is $\gamma=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(q E)^{2}}{8 \pi^{3} n^{2}} e^{-\pi m^{2} n /|q E|}$. Affleck, Alvarez, and Manton (1982) found a much simpler rederivation of this result using instantons and the worldline path integral for the charged particle in an external field: the electric field in Euclidean space resembles a magnetic field and the classical motion in a constant electric field $\vec{E}=E \hat{z}$ is circular, similar to a cyclotron orbit in the $\left(z, x_{4}\right)$ Euclidean plane, with radius $m / q E$. The solution represents tunneling between the vacuum with zero particles and the vacuum with a particle-antiparticle pair. This could also be a nice topic for a final presentation.

