
215c, 4/27/20 Lecture outline. c© Kenneth Intriligator 2020.

⋆ Week 5 reading: Tong chapter 2.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Briefly mention pair creation in an external electric field. E.g. Schwinger calculated

in 1951 that the rate per volume for pair creating particles of mass m and charge q in an

external electric field E is Γ =
∑∞

n=1
(−1)n+1(qE)2

(2π)3n2 e−πm2n/|qE|. Need a big eE – not yet

observed. Schwinger’s calculation was to consider one-loop of virtual e+e− connecting with

gauge field propagators to arbitrary 2n-point functions of the external gauge field. Affleck,

Alvarez, and Manton (1982) found a nice rederivation of this result using instantons and

the worldline path integral for the charged particle in an external field. In Euclidean

space we can take Aext
µ = 1

2F
ext
µν x

ν with F ext
34 = iE. The electric field in Euclidean space

resembles a magnetic field and the classical motion in a constant electric field ~E = Eẑ is

circular, similar to a cyclotron orbit in the (x3, x4) Euclidean plane, with radius m/|qE|.

The classical Euclidean action of the n-instanton configuration, where it rotates around

n times, is then computed to be S = nπm2/|qE|. Then find that Γ (including of course

the prefactor) can be evaluated by summing over such instanton configurations. The

solution represents tunneling between the vacuum with zero particles and the vacuum

with a particle-antiparticle pair. This could also be a nice topic for a final presentation.

• Next topic: renormalization group running of gYM and the Case of the Negative

Beta Function. Recall the notions of the RG, where we integrate out UV modes above some

scale µ and consider running as the scale is changed. Operators have scaling dimension

∆, which can include quantum corrections γ. In d spacetime dimensions, ∆(L) = d and

an operator O is relevant if ∆ < d, irrelevant if ∆ > d, and marginal if ∆ = d. If an

irrelevant operator is added to L, its effect becomes small in the IR, and large in the UV,

and visa-versa for relevant operators. In d = 4 for example, mass terms like m2φ2 and

mψ̄ψ are relevant. The couplings in λφ4, and hφψ̄ψ, and the fine structure constant of

QED α = e2/4πh̄c are all classically dimensionless, corresponding to the fact that they

are coefficients of operators that are all classically marginal. In the quantum theory, these

operators get anomalous dimension and correspondingly the operators get non-zero beta

functions. This can be regarded as an anomaly: the theories with only these couplings (and

no mass terms) have a classical xµ → λxµ scale transformation, with Noether current the

dilatation current jµD = Tµνxν , which is classically conserved because classically Tµ
µ = 0.

Quantum effects break this classical symmetry: ∂µj
µ
D = Tµ

µ ∼ βOint, e.g. for gauge
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theory Tµ
µ ∝ β(g−2)FµνF

µν . “Dimensional transmutation ”: the classically dimensionless

couplings are replaced with a dynamically generated mass scale Λ. Recall that β(g) ≡ dg
d lnµ

and it turns out that all of the above-mentioned examples have β > 0, corresponding to

the fact that the operators are all marginally irrelevant – they flow to zero in the IR. In

fact, there is a proof (Coleman and Gross ’73) that, without non-Abelian gauge theories,

there cannot be marginally relevant couplings. E.g. λφ4 has β(λ) = 3λ2/16π2+O(λ3) > 0.

Integrating the one-loop term gives exp(−8π2/λ(µ)) ≈ (µ/Λ)3/2, where we need µ ≪ Λ

for perturbation theory to hold; Λ is a UV cutoff, and in the IR, as µ → 0, we see that

λ→ 0, so the theory is IR free. QED is qualitatively similar – this is the Landau pole – as

is Yukawa theory. For QED, the one-loop beta function is β(α) = Tr(Q2) 2α3π +O(α2) > 0,

where TrQ2 ≡
∑Nf

f=1 q
2
f (this is with charged Fermions - one could similarly compute

for the case of charged scalars; we do not consider the case of charged spin 1 because

we’re interested here in massless fields and there is a problem, proved by Weinberg and

Witten, with massless charged fields of spin j > 1
2 coupling to conserved currents. A

non-Abelian gauge field can be thought of as a massless spin 1 contribution, and the

loophole is that it couples to a covariantly conserved current; this loophole is what leads

to the negative beta function for YM) and integrating the one-loop beta function gives

exp(−8π2/e2(µ)) ≈ ( µ
Λ
)4TrQ

2/3, where again Λ is a UV cutoff and the theory is IR free for

µ → 0. Likewise the Yukawa coupling has β(h) ≥ 0, where β = 0 for the free theory with

zero coupling.In fact, for Yukawa theory in the context of nuclear physics is because this is

a low energy approximation to QCD, so the UV cutoff is related to where the description

breaks down.

• Draw pictures of RG flows and mention the history from the 1970s, where theorists

were trying to kill off QFT as a sensible theory by showing Landau pole behavior in the

UV. Mention asymptotic safety question. There were more and more general proofs that

general unitary interacting theories will lead to β > 0. At that time, Yang-Mills theory

was not considered to be important, so computing its beta function seems to have been

largely a curiosity and grad student project to verify that it too leads to β > 0 – but there

was a surprise! In hindsight, it has a loophole in the proofs that β > 0 because the gauge

fields Aa
µ are in the adjoint representation rather than gauge invariant.

• Intuitive vacuum screening picture in QED: the positive beta function is from po-

larizing the vacuum, which screens electric charge. Like ~D = ǫ ~E with ǫ = ǫ0(1 + χe) with

electric susceptibility χe > 0, so polarization reduces the electric field. For magnetic field

~B = µ ~H with µ = µ0(1 + χm), with either sign χm (diamagnets if −1 ≤ χm < 0 and
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paramagnets if χm > 0). The QFT vacuum can be polarized, but need ǫµ = 1 for the

gauge fields to move at c = 1. So diamagnetic vacuum has electric screening (β > 0) and

paramagnetic vacuum has electric anti-screening (β < 0).

• We will sketch how to compute β1−loop for Yang-Mills. It is negative, was computed

by Gross and Wilczek, and independently by Politzer, and this was recognized by a Nobel

prize in 2004. Picture of the RG flows, with asymptotic freedom in UV and strong cou-

pling in the IR. Matches beautifully to real-world QCD, especially for E ≫ ΛQCD where

the theory is weakly coupled and precision calculations and comparison to experiment is

possible. (αs(MZ) ≈ 0.1).

• To build up to that, let’s write down the Feynman rules for the case of pure Yang-

Mills. We can add charged matter later (the matter contributes positively to the beta

function, so β < 0 only if there are not too many matter fields).

Consider first the gauge field propagator. As in QED, we can see it from the path

integral perspective by considering the Aa
µA

b
ν terms in L and the Gaussian integral leads

to the inverse of the differential operator that acts on them. As in QED, there is a

subtlety from gauge invariance: the differential operator has zero modes from pure gauge

configurations, and the procedure is to fix a gauge and then one can check that the results in

the end are gauge invariant. If, as in QED, we add a− 1
2ξ
(∂µA

a,µ)2 gauge fixing term, we get

a gauge field propagator iδab(−gµν+(1−ξ) p
µpν

p2 )/(p2+ iǫ) and the results are independent

of ξ. But things are a bit more complicated than in QED, related to the nonlinearities

of YM, because the gauge fields are in the adjoint representation and the currents are

covariantly conserved. The upshot is that we need to consider ghosts. Feynman and Bryce

DeWitt (independently) first noticed this in the context of trying to quantize gravity in

the 1960s. They realized that the non-linearity led to problems, and studied Yang-Mills

theory, which at the time was just a mathematical possibility, as a toy model for gravity.
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