
1/3/11 Lecture outline

⋆ Last quarter’s class covered Peskin and Schroeder chapters 1-5. The next topic in

Peskin and Schroeder is radiative corrections (Feynman diagrams with loops), particularly

in QED. We’ll get to this, but after a detour on the Feynman path integral. Also, before

discussing QED, we’ll discuss renormalization, illustrating it in scalar field theory. We’ll

discuss topics contained in Peskin and Schroeder chapters 6-13, but in a different order

than in the text.

Week 1 reading: Peskin and Schroeder sections 9.1, 9.2, 9.3.

• We’ll focus for a while on scalar field theory, e.g. L = 1
2∂µφ∂

µφ − V (φ), with e.g.

V (φ) = 1
2m

2φ2 + Vint(φ), with e.g. Vint(φ) = 1
4!λφ

4.

• Fields can be quantized using canonical quantization, as was discussed last quarter.

The following is a summary for those who want a brief review. The field φ(x) is analogous

to q(t) in QM (indeed, QM is a particular case of QFT in one dimension), and its conjugate

momentum is Π = ∂L/∂φ̇. These are operators, with equal time commutators

[φ(t, ~x),Π(t, ~x′)] = ih̄δ3(~x− ~x′).

We’ll usually set h̄ = 1. The S-matrix elements, used to compute scattering cross sections

and lifetimes etc. are computed from an amplitude 〈f |S|i〉 which is related to the vacuum

expectation values of time-ordered products of the fields. This is seen from Dyson’s formula

or from the LSZ derivation, to be discussed in more detail later:

〈f |i〉 = 〈k1′ . . . kn′ |k1 . . . kn〉

= in+n′

n′∏

j′=1

∫
d4x′je

ik′

jx′

j (∂2
j′ +m2)

n∏

j=1

e−ikjxj (∂2
j +m2)Gn+n′(x1 . . . xn, x1′ . . . xn′),

(1)

where

Gn+n′(x1 . . . xn, x1′ . . . xn′) ≡ 〈0|Tφ(x1′) . . . φ(xn′)φ(x1) . . . φ(xn)|0〉. (2)

Using Wick’s theorem,

T (φ1 . . . φn) =: φ1 . . . φn : + : all contractions,

then led to a derivation of Feynman’s rules for computing amplitudes, from Feynman

diagrams.
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• Our first topic will be to get an alternative derivation of the Feynman rules, using the

Feynman path integral. This gives an alternative to canonical quantization for quantizing

particles and fields, and additional insights into the Feynman diagrams and rules.

We’ll start with considering particle quantum mechanics. The probability amplitude

to go from position q at time t to q′ at time t′ is 〈q′, t′|q, t〉. Let’s write this as the time

evolution operator

U(xa, xb;T ) = 〈xb|e
−iHT/h̄|xa〉.

Satisfies SE

ih̄∂TU = HU.

Feynman:

U(xa, xb;T ) =

∫
[dx(t)]eiS[x(t)]/h̄.

Integral can be broken into time slices, as way to define it.

E.g. free particle

(
−im

2πh̄ǫ

)N/2 ∫ N−1∏

i=1

dxi exp[
im

2h̄ǫ

N∑

i=1

(xi − xi−1)
2]

Where we take ǫ→ 0 and N → ∞, with Nǫ = T held fixed.

Do integral in steps. Apply expression for real gaussian integral (valid: analytic

continuation): ∫ ∞

−∞

dφ exp(iaφ2) =

√
iπ

a
.

where we analytically continued from the case of an ordinary gaussian integral. Think of

a as being complex. Then the integral converges for Im(a) > 0, since then it’s damped.

To justify the above, for real a, we need the integral to be slightly damped, not just purely

oscillating. To get this, take a→ a+ iǫ, with ǫ > 0, and then take ǫ→ 0+. We’ll see that

this is related to the iǫ that we saw last quarter in the Feynman propagator, which gave

the T ordering.

After n− 1 steps, get integral:

(
2πih̄nǫ

m

)−1/2

exp[
m

2πih̄nǫ
(xn − x0)

2].

So the final answer is

U(xb, xa;T ) =

(
2πih̄T

m

)−1/2

exp[im(xb − xa)2/2h̄T ].
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Note that the exponent is eiScl/h̄, where Scl is the classical action for the classical

path with these boundary conditions. (More generally, get a similar factor of eiScl/h̄ for

interacting theories, from evaluating path integral using stationary phase.)

Plot phase of Uas a function of x = xb − xa, fixed T , Lots of oscillates. For large x,

nearly constant wavelength λ, with

2π =
m(x+ λ)2

2h̄T
−

2m2

2h̄T
≈
mxλ

h̄T
= pλ/h̄.

Gives p = h̄k.

Recover ψ ∼ eipx/h̄. More generally, get p = h̄−1k, with p = ∂Scl/∂xb (can show

p = ∂L/∂ẋ = ∂Scl/∂xb. Can also recover ψ ∼ e−iωT , with ω = h̄−1(−∂Scl/∂tb). Agrees

with E = h̄ω, since E = pẋ− L = −∂Scl/∂tb.

• Nice application: Aharonov-Bohm. Recall L = 1
2m~̇x

2
+ q~̇x · ~A − qφ. Solenoid with

B 6= 0 inside, and B = 0 outside. Phase difference in wavefunctions is

ei∆S/h̄ = eiq
∮

~A·d~x/h̄ = eiqΦ/h̄.

Aside on Dirac quantization for magnetic monopoles.

• Can derive the path integral from standard QM formulae, with operators, by intro-

ducing the time slices and a complete set of q and p eigenstates at each step.

〈q′, t′|q, t〉 =

∫ ∫ N∏

j=1

dqj〈q
′|e−iHδt|qN−1〉〈qN−1|e

−iHδt|qN−2〉 . . . 〈q1|e
−iHδt|q〉,

where we’ll take N → ∞ and δt → 0, holding t′ − t ≡ Nδt fixed. Note that even

though eA+B = eAeBe−
1
2
[A,B]+..., we’re not going to have to worry about this for δt→ 0:

e−iHδt = e−iδtp2/2me−iδtV (q)eO(δt2). Now note

〈q2|e
−iHδt|q1〉 =

∫
dp1〈q2|e

−iHδtp2/2m|p1〉〈p1|e
−iV (q)δt|q1〉,

=

∫
dp1e

−iH(p1,q1)δteip1(q2−q1).

This leads to

〈q′, t′|q, t〉 =

∫
[dq(t)][dp(t)] exp(i

∫ t′

t

dt(p(t)q̇(t) −H(p, q))),

and taking H quadratic in momentum and doing the p gaussian integral recovers the

Feynman path integral.

3



• The same derivation as above leads to e.g.

〈q4, t4|T q̂(t3)q̂(t2)|q1, t1〉 =

∫
[dq(t)]q(t3)q(t2)e

iS/h̄,

where the integral is over all paths, with endpoints at (q1, t1) and (q4, t4).

A key point: the functional integral automatically accounts for time or-

dering! Note that the LHS above involves time ordered operators, while the RHS has a

functional integral, which does not involve operators (so there is no time ordering). The

fact that the time ordering comes out on the LHS is wonderful, since know that we’ll

need to have the time ordering for using Dyson’s formula, or the LSZ formula, to compute

quantum field theory amplitudes.

• The nice thing about the path integral is that it generalizes immediately to quantum

fields, and for that matter to all types (scalars, fermions, gauge fields). E.g.

〈φb(~x, T )|e−iHT |φa(~x, 0)〉 =

∫
[dφ]eiS/h̄ S =

∫
d4xL.

This is then used to compute Green’s functions:

〈Ω|T
n∏

i=1

φH(xi)|Ω〉 = Z−1
0

∫
[dφ]

n∏

i=1

φ(xi) exp(iS/h̄),

with Z0 =
∫

[dφ] exp(iS/h̄). Again, as noted above, the T ordering will be automatic.
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