
3/7/11 Lecture 17 outline

• New topic: quantum field theory for fields with spin, in particular spin 1/2 fermions

and spin 1 gauge fields, for example for QED 1. Path integral of same, general form, but

need to understand some new issues with the integrations. Consider fermions first, where

the functional integral is over grassmann valued fields. As you saw in a HW set, grassmann

number integrals work like
∫
dθ(A + Bθ) = B. Complex θ, θ∗,

∫
dθ∗dθ exp(−θ∗bθ) = b.∏

i

∫
dθ∗i dθi exp(−θ∗iBijθj) = detB.

∏
i

∫
dθ∗i dθi exp(−θ∗iBijθj)θkθ∗l = (B−1)kl detB.

• We can introduce sources for the fields:

Z[η̄i, ηi] =

∫
dθ̄idθi exp(i(Aij θ̄iθj + η̄iθi + θ̄iηi])

=

∫
dθ̄idθi(1 + i(θ̄, Aθ))(1 + iη̄θ)(1 + iθ̄η),

= −i detA exp(−iη̄iA−1
ij ηj).

• Generalize to functional integrals over fermionic fields;

Z[η̄, η] =

∫
[dψ̄][dψ] exp(i

∫
d4x[ψ̄(i/∂ −m)ψ + η̄ψ + ψ̄η]

= Z0 exp[−
∫
d4xd4yη̄(x)SF (x− y)η(y).

where

SF [x− y] = i(i/∂ −m)−1 =

∫
d4k

(2π)4

ie−ik(x−y)

/k −m+ iε
.

Get e.g.

〈0|Tψ(x)ψ̄(y)|0〉 = Z−1
0 (−i δ

δη̄(x)
)(i

δ

δη(y)
)Z[η, η̄]|η,η̄=0 = SF (x− y).

This gives the Feynman rules for fermions that you saw last quarter.

• For fermions, the detB is in the numerator, whereas for scalars it’s in the denomi-

nator. The functional integral gives eiW . So the sign of the contribution to W is opposite

for closed scalar vs fermion loops: every closed fermion loop gets an extra −1 factor. (This

relative minus sign is put to good use with supersymmetry!)

• Functional integral for gauge fields. Important point: gauge invariance. Write A =

Aµdx
µ. Recall gauge symmetry A→ Aα = A+ dα(x), with ψ → e−ieα(x)ψ. Redundancy

1 Fields with higher spin, e.g. the spin 2 metric, whose quanta are gravitons, can also be

treated with the path integral, though they are non-renormalizable so a UV cutoff is required.

Additional physics (e.g. string theory) can give a UV completion of the theory above the cutoff.
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in description, can only observe gauge invariant quantities. Need to replace ∂µ → Dµ ≡
∂µ + ieAµ. Then Dα

µψ
α = e−ieαDµψ transforms nicely, with just an overall phase, and

ψ̄Dµψ is gauge invariant. So the Dirac lagrangian, ψ̄(i /D − m)ψ is gauge invariant. In

functional integral, will have
∫

[dA] exp(iS). Integration measure must be gauge invariant,

implies it gets a factor of gauge orbit volume. Would like to integrate only over a slice of

inequivalent gauge fields, without integrating over the gauge orbits. Need to do this, since

otherwise there is no well defined B−1. Recall S =
∫
d4x[− 1

4F
2
µν ] = 1

2

∫
d4kAµ(x)(∂2gµν −

∂µ∂ν)Aν(x). Note action vanishes if Ãµ(k) = kµα(k). Gauge invariance. ATµ = PµνA
ν ,

Pµν = gµν − ∂µ∂ν/∂2. − 1
4FµνF

µν = 1
2A

T
µ∂

2gµνATν . Can’t invert kinetic terms uniquely to

find Green’s function. We need to fix the gauge.

The functional integral should be over
∫

[dAµ]/(GE), where we divide by the volume

of the gauge equivalent orbits. The gauge equivalent orbits are associated with gauge

transformations α(x), e.g. Aµ → Aµ + ∂µα(x) in the Abelian case. We want to do the

functional integral over Aµ, dividing out by the α(x).

(Here are some details: Do this via

1 =

∫
[dα(x)]δ(G(Aα)) det

(
δG(Aα)

δα

)
= ∆

∫
[dα]δ(G(Aα)),

where G(A) = 0 is some gauge fixing condition, e.g. Lorentz gauge, G(A) = ∂µA
µ and

∆ = det

(
δG(Aα)

δα

)
G=0

.

∆ is the Faddeev-Popov determinant. Write the functional integral as (using the gauge

invariance of measure and action)∫
[dα][dA]∆δ(G[A]) exp(iS[A]).

Have factored out the integral over the group volume. We can then just easily divide out

by [dα], just cross it out. What’s left is the gauge fixing delta function, and appropriate

determinant factor.

Take e.g. G = ∂µAµ − f(x) for some function f(x). Then ∆ ∼ det(∂2) is a constant.

Get

eiW = N

∫
(dA)eiSδ(∂µAµ− f) = N

∫
[dA][df ]eiSδ(∂µAµ− f)G(f) = N

∫
[dA]eiSG(∂A),
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for arbitrary functional G. Choose G(f) = exp(− 1
2 iξ
−1
∫
d4xf2), for some real number ξ.

Get

eiW = N

∫
[dA] exp(iS − 1

2ξ
−1

∫
d4x(∂µAµ)2).

Then get for the propagator

Dµν =
−i
k2

[gµν −
kµkν
k2

+ ξ
kµkν
k2

].

Popular choices: ξ = 1 is Feynman propagator, ξ = 0 is Landau gauge propagator. Physics

is ξ independent (result of gauge invariance, which yields Ward-Takahashi identities). Let’s

choose to use Feynman gauge.)

• Gauge invariance shows up in the amplitudes by what’s know as the Ward-Takahashi

identities. Consider a green’s function 〈0|Tjµ(x)
∏
i Φ(xi)|0〉, where jµ is the conserved

current and Φ(xi) are other fields (they could be fermions). Much as you saw in a HW

exercise, using the functional integral it is seen (by going through the symmetry transfor-

mation change of variables a-la Noether’s procedure) that current conservation holds up

to δ(x− xi) contact terms. For example,

i∂µ〈0|Tjµ(x)ψ(x1)ψ(x2)|0〉 = ie(δ(x− x2)− δ(x− x1))〈0|Tψ(x1)ψ(x2)|0〉.

In momentum space,

−ikµMµ(k, p, q) = −ieM0(p, q − k) + ieM′(p+ k, q).

Amplitudes with more external states are similar, with a sum over all external states

weighted by their charge. When we go to S-matrix elements using the LSZ procedure, the

terms on the RHS vanish when we amputate the external legs and go on-shell, so current

conservation is indeed satisfied in S-matrix elements.
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