203a Homework 5, due March 5

- 1. (O'Neil) Consider two particles of charge e and mass m, initially held at $z = \pm d$ in the lab frame. The particles are then released. Call particle 1 that at z = +d and particle 2 that at z = -d. Keep everything fully relativistic.
 - (a) Find the acceleration \vec{a} of particle 1 due to the force from the fields of particle 2.
- (b) Now transform to the \prime rocket frame, moving with velocity $\vec{v} = v\hat{x}$ with respect to the lab frame. Transform the fields due to charge 2 from the lab to the rocket frame, to find $\vec{E'}$ and $\vec{B'}$ in the rocket frame. Using these fields compute the force on charge 1 due to the fields of charge 2, and then solve for $\vec{a'}$ of charge 1.

(c) Compare your results from parts (a) and (b) and see if they're consistent with the relativistic formula for the transformation of accelerations.

- 2. Consider the following three cases for the electric and magnetic fields in some frame K (with P some constant):
- i. $\vec{E} = (4P, 0, 0)$ and $\vec{B} = (0, 5P, 0)$
- ii. $\vec{E} = (5P, 0, 0), \vec{B} = (0, 4P, 0)$
- iii. $\vec{E} = (P, 0, 0), \vec{B} = (P, 2P, 0).$
- a. In which of these cases is there a frame K' where the field is purely electric? For each such case, write out the Lorentz transformation, $x^{\mu} = \Lambda^{\mu}_{\nu} x^{\prime \nu}$, between the frame K and the frame K' where $\vec{E}' = E'_0 \hat{x}$ and $\vec{B}' = 0$? What is E'_0 in terms of P?
- b. In which of the above cases is there a frame K' where the field is purely magnetic? For each such case, write out the Lorentz transformation $x^{\mu} = \Lambda^{\mu}_{\nu} x'^{\nu}$, between the frame K and the frame K' where $\vec{E'} = 0$ and $\vec{B'} = B'_0 \hat{y}$? What is B'_0 in terms of P?
- c. For the case or cases found in part (b), solve for the motion of a charge q particle which is at $x^{\mu} = 0$, with velocity $\vec{v} = 0$, in frame K. Solve for the trajectory $x'^{\mu}(t') = (ct', \vec{x}'(t'))$ seen in the frame K', where the field is purely magnetic.
- 3. In class we discussed an infinite wire, of constant charge per length λ' that is at rest along the \hat{x} axis in the rocket frame, that is moving with velocity $\vec{v} = v\hat{x}$ relative to the lab frame. We found ρ and \vec{J} in the lab frame.

(a) Compute $\vec{E'}$ and $\vec{B'}$ in the rocket frame and transform them to the lab frame, to find \vec{E} and \vec{B} .

(b) Find \vec{E} and \vec{B} directly from the ρ and \vec{J} in the lab frame. Verify that they agree with those found above.