203a Homework 2, due Jan. 23

- 1. Review of vector calculus in different coordinate systems (e.g. spherical, or cylindrical, but here more generally). The coordinates are ξ_i , and their associated orthonormal unit vectors are \hat{e}_i and the length element is $d\vec{\ell} = \sum_{i=1}^3 h_i(\xi) d\xi_i \hat{e}_i$, for some general functions $h_i(\xi)$. You can loop up the answers to the below in many places, but the idea of this **exercise** is to draw pictures and make the results your own, so you can re-derive them if you ever need them.
 - (a) Write the expressions for the area element $d\vec{a}$ and volume element dV.
 - (b) Write the expression for ∇f , such that $\int_1^2 \nabla f \cdot d\vec{\ell} = f(2) f(1)$.
 - (c) Write the expression for $\nabla \cdot \vec{F}$, such that Gauss' law holds.
 - (d) Write the expression for $\nabla \times \vec{F}$ such that Stoke's law holds.
- 2. Revenge of the 4π . Imagine that you are Luke Skywalker, or Princess Leia (your choice!), and you want become a 4π -master (first step to being a Jedi master!). Yoda kindly pushes you through a portal, to another world where there are D space dimensions. He now tortures ... ahem, strengthens you with the following exercise: find the Green's function of the Laplacian in this D dimensional world. Specifically, find the values of k and C such that

$$\nabla^2(r^{-k}) = C\delta^D(\vec{r}).$$

where r is the radial coordinate. Hint: Gauss' law $\int_V dV \nabla \cdot \vec{F} = \int_{\partial V} \vec{F} \cdot d\vec{a}$ still holds in this other world, where now dV has units $Length^D$ and $d\vec{a}$ has units $Length^{D-1}$. You also might enjoy knowing that the volume and surface area of a sphere in this dimension is

$$V = \frac{\pi^{D/2}}{(D/2)!} R^D, \qquad A = \frac{2\pi^{D/2}}{((D/2) - 1)!} R^{D-1},$$

where recall e.g. $(-\frac{1}{2})! = \Gamma(\frac{1}{2}) = \sqrt{\pi}$. Write k and C for general D. As a special case, you should recover our old friends for D = 3: $k_{D=3} = 1$, and $C_{D=3} = -4\pi$. Yes!

- 3. Garg 22.1 (give details, more than just the answers stated in the book).
- 4. Garg 23.4
- 5. Garg 27.1.