203a Homework 4, due Feb. 6

1. In class, we verified energy conservation for a charging-up capacitor, showing that $\frac{d}{dt}U_{field} + \int_{\partial V} \vec{S} \cdot d\vec{a} = 0$. We said that we'll approximate U_{field} as coming only from the electric field inside the capacitor, neglecting the magnetic field contribution, and that this gives $U_{field,elec} \approx Q^2/2C$, where C is the capacitance, i.e. $Q = C\Delta\phi$, where ϕ is the scalar potential and $\Delta\phi$ is the voltage difference between the two plates. Suppose that you're curious as to why we neglected the \vec{B} field contribution to U_{field} ; then you'll enjoy verifying the following questions.

(a) Verify that $\int dV E^2/8\pi$ over the inside of the capacitor gives $U_{field,elec} = Q^2/2C$. Verify it explicitly for parallel plates of area Q, and separation d, with charge Q on one and -Q on the other, neglecting end effects. Find C, both from $U_{field,elec} = Q^2/2C$ and from $Q = C\Delta\phi$ and show that they agree.

(b) Same as above, but this time for concentric cylinder plates. Again, find C the two ways and show they agree.

- (c) Same as above, but for concentric spherical shell plates.
- (d) Can you give a general argument for why the above always gave $U_{field} = \frac{1}{2}Q\Delta\phi$?
- 2. Now we suppose, as in class, that $\dot{Q} \neq 0$. The approximation in class was that the charge is changing sufficiently slowly that terms like \dot{Q}^2 and d^2Q/dt^2 could be neglected. Here we're going to see how things work when we go beyond that approximation. Consider two parallel disk plates, of radius R, and separation d.
 - (a) Find \vec{B} everywhere inside the capacitor plates.

(b) Compute $U_{field,mag} \equiv \int dV B^2/8\pi$. You should find $U_{field,mag} = \frac{1}{2}L\dot{Q}^2$, where the calculation will reveal what L (the inductance of the capacitor) is. What is the approximation needed for $U_{field,elec} \gg U_{field,mag}$ to be true?

(c) Suppose that you're curious how the energy conservation equation now works. We get $\dot{U}_{field,elec} = Q\dot{Q}/C$ and $\dot{U}_{field,mag} = LI\dot{I}$, with $I \equiv \dot{Q}$. Can you show where the needed additional contribution to the energy flux, to account for $\dot{U}_{field,mag}$, comes from? Can you work it out in detail, to verify energy conservation?

- 3. Garg 35.2 (very similar to the above).
- 4. Garg 36.1.
- 5. Garg 36.3.
- 6. Garg 36.6.
- 7. Garg 37.1.