
3/4/13 Lecture outline

• No action at a distance: all interactions are via fields, which transmit the interaction

over spacetime. The transmission has a universal maximal speed, c ≈ 2.998× 1010cm/sec.

• Principle of (special) relativity: no local physics experiment can distinguish one

inertial frame from another. If one frame is inertial, any moving with constant relative

velocity is also inertial.

• Spacetime 4-vector: xµ = (x0, ~x), with x0 ≡ ct. Suppose event A is at xµA and event

B is at xµB. Let ∆xµ ≡ xµB − xµA = (c∆t, ~∆x) be their spacetime separation. Define the

spacetime interval: ∆s2 ≡ (∆x0)2 −∆~x2. If the two events are connected by a light ray,

then ∆s2 = 0, and we say the events are lightlike (or null) separated. If the two events have

∆s2 > 0, then we say they are time-like separated, e.g. two events at the same position, at

differing times. If the two events have ∆s2 < 0, then we say they are space-like separated,

e.g. two events at different locations, at the same time. The statement of no action at a

distance means that events A and B can be causally related, e.g. event A is the cause and

event B is the effect, only if ∆s2 ≥ 0.

Now consider two inertial frames, the lab and a rocket. The person in the lab uses

coordinates xµ = (ct, ~x) and the person in the rocket uses xµ
′

= (ct′, ~x′). They both

observe events A and B. If the events are connected by a light ray, the principle of

relativity implies ∆s2 = ∆s′2 = 0. This implies more generally ∆s2 = f(|~v|)∆s′2, with ~v
the relative velocity of two frames. But inverse transform says ~v → −~v must send f → 1/f ,

so get f = 1, i.e. ∆s2 = ∆s′2 is a Lorentz invariant, the same in all inertial frames. Write

the invariant interval using ds2 ≡ (cdt)2 − d~x · d~x.
• The ∆s2 between two events is an example of a 4-scalar, a quantity that’s the same

for all inertial observers. The principle of relativity posits that the result of any experiment

is the same in any inertial frame of reference. Relativity says that every physical quantity

is either a 4-scalar or fits into an appropriate generalization: 4-vector, 4-tensor, that can

be used to form frame-invariant physical quantities.

• The action must be a 4-scalar. Then the equations of motion, coming from least

action, are guaranteed to be properly related in different frames of reference. (Also, this

fits nicely with the path integral description of QM, where ψ ∼ eiS/h̄.)

• Another 4-scalar: the total electric charge of an object, or in a “box” in space.

• The mass m of a particle is a 4-scalar.

• Another 4-scalar: the proper time interval between two time-like separated events

A and B: ∆τ =
∫ B

A
dτ , where dτ2 ≡ ds2/c2.
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• Aside (don’t cover in lecture): condition on L for Gallean invariance under ~xi =

~x′i + ~v0t, ~vi = ~v′i + ~v0:

L(~xi, ~vi, t) = L(~x′i, ~v
′

i, t
′) +

dG

dt
,

which implies that L is linear in the 〈v〉2i , ∂L/∂~v2i = αi a constant. Consider ~v0 small,

show how it works with G =
∑

i 2~xi · ~v0/αi. Introduce mass: αi = mi/2. Writing the EL

equations, get forces from gradients of U : infinite signal speed. Not correct: maximum

actual signal speed is c (or the speed of superluminal neutrinos .... just kidding).

• More on proper time: read by moving clock. For timelike separated events, there is

a frame where the events occur at the same spatial position. The proper time is the time

experienced by clocks in that frame. So dτ = dt′ when d~x′ = 0.

• Four vectors aµ = (a,~a) and bµ = (b,~b), with dot product a · b = a0b0−~a ·~b ≡ aµb
µ,

where aµ ≡ ηµνa
µ = (a0,−~a). Here ηµν ≡ diag(1,−1,−1,−1) is the metric of SR1.

Einstein summation convention: repeated upper and lower indices are always summed

over. We saw that dxµdxµ is a 4-scalar, the same in all inertial frames. All 4-vectors

transform like dxµ between Lorentz frames. So if aµ and bµ are any 4-vectors, then aµb
µ

is a Lorentz invariant scalar.

• Examples of 4-vectors: dxµ, pµ = (E/c, ~p), kµ = (ω/c,~k), Jµ = (cρ, ~J), Aµ = (φ, ~A),

∂µ ≡ ∂
∂xµ = ( 1c

∂
∂t ,

~∇). Note that ∂µ has a lower index, whereas ∂µ = ηµν = ( 1c
∂
∂t ,− ~∇).

The lower index makes sense, for example ∂µx
µ = 4 in all reference frames. The charge

conservation equation in this notation is ∂µJ
µ = 0. The Lorentz gauge condition is ∂µA

µ =

0. The d’Almbertian is ∂µ∂
µ, so it is a Lorentz invariant scalar. The solution of the wave

equation ∂2φ, e.g. φ = Aei
~k·~x−ωt is Lorentz invariant, since kµx

µ = ωt− ~k · ~x.
• Inertial frames are related by a linear relation: xµ

′

= Λµ′

νx
ν . All 4-vectors trans-

form the same way, with the same Λµ′

ν , i.e. : aµ
′

= Λµ′

ν a
ν , and bµ

′

= Λµ′

ν b
ν . The relativistic

dot product of two 4-vectors is a 4-scalar, i.e. the same in all frames: aµb
µ = aµ′bµ′ . This

condition determines the allowed transformations: the dot product is preserved as long as

ηρσ = Λµ′

ρ Λν′

σ ηµ′ν′ .

All Λ satisfying this form the Lorentz group. Note that all such Λ have determinant ±1,

and all those connected to the identity have determinant 1, so they have d4x = d4x′.

1 Aside (don’t cover in lec.): GR replaces ηµν with a dynamical metric gµν(x). This will be

analogous to Aµ in E&M. The analog of Maxwell equations will be Einstein’s equations, relating

derivatives of the metric to the “charge” source of gravity: energy and momentum.
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Examples: rotate in x, y plane

(

x′

y′

)

=

(

cos θ sin θ
− sin θ cos θ

)(

x
y

)

; boost along x axis,
(

ct′

x′

)

=

(

coshφ − sinhφ
− sinhφ coshφ

)(

ct
x

)

. Consider the origin x′ = 0 in the original frame,

x/t = v = tanhφ, so sinhφ = γv and coshφ = γ ≡ 1/
√

1− v2/c2. Note taking v → −v
gives the inverse transformation. Will often set c = 1.

Heartbeat in ′ frame: dt′, with dx′ = 0, get dt = γdt′, so seems to beat slower (likewise

from ds2 = −dt2 + d~x2 = −dt′2.
Ruler in ′ frame, length dx′. Measure both ends simultaneously in lab, with dt = 0,

Then dx = dx′/γ, length contracted.

Two events are timelike separated if there is a frame where they happen a the same

place. In that frame, ∆s2 = ∆t′2 ≡ ∆τ2, where ∆τ is the “proper time” between the

events. In any other frame, ∆t = γ∆τ , time dilation.

For spacelike path, ∆s =
∫

ds =
∫

√

−ηµν dxµ

dλ
dxν

dλ dλ. For timelike paths, the total

proper time is ∆τ =
∫

√

ηµν
dxµ

dλ
dxν

dλ
dλ. This applies even if there is acceleration2. If no

acceleration, can write ∆τ =
∫ √

1− v2dt.

• Since dxµ is a 4-vector and dτ is a scalar, we can form another 4-vector, the 4-

velocity: 4-velocity, uµ = dxµ/dτ = γ dxµ

dt
= (γc, γ~v), so uµuµ = c2.

For a free particle of mass m, pµ = muµ.

2 Aside (don’t cover): Consider proper time between timelike separated events A and C. For

observer 1, in the frame where they’re at the same place, the proper time is ∆t = tC − tA. For

observer 2, who moves and comes back, the proper time length is ∆τAB′C =
√

1− v2∆τABC <

∆τABC . Moving twin is younger when they meet again. Non-straight path has shorter proper

time. In spacetime, straight path between two events has the longest proper time.
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