
3/9/15 -3/13/15 week, Ken Intriligator’s Phys 4D Lecture outline

• 4-vector dot product a · b = aµb
µ = aµbνηµν . If aµ = (a0,~a), then aµ = (a0,−~a).

E.g. xµ = (ct, ~x) and xµ = (ct,−~x). If aµ has the usual Lorentz transformation, then aµ

has the inverse transformation (~vrel → −~vrel), so aµb
µ is invariant. Recall from HW 1 that

∂µ = (∂x0 ,−∇).

• Relativity and electromagentism. Can write the Lorentz force law as a relativisitc

4-vector equation dpµ

dτ = fµ = (f0, ~f), with f0 = γP and ~f = γ ~F . The Lorentz force law

is ~F = q( ~E + ~v
c × ~B), which we can rewrite as ~f = q(u0 ~E + ~u× ~B), where uµ = (u0, ~u) =

dxµ

dτ = (γ, γ~v). The equation for power gives dp0

dτ = q
c~u · ~E. These equations assemble

into a 4-vector equation dpµ

dτ = fµ = q
cF

µνuν . Here Fµν = −F νµ, with F 0,i = −Ei and

F 12 = −B3, F 13 = B2, and F 23 = −B1.

Note that fµ = mdvµ

dτ and uµu
µ = c2 implies that uµf

µ = 1
2m

d(uµu
µ)

dτ = 0, and this is

satisfied by the Lorentz force law above since Fµνuµuν = 0, thanks to Fµν = −F νµ.

• Under a Lorentz transformation, 4-vectors have aµ =
∑

Λµ
ν′aν

′

, and Fµν behaves

like that for each index, i.e. F = ΛTF ′Λ. Taking the two frames to have relative velocity

vrel along the x̂ axis, this implies that (setting c = 1): Ex = E′

x, Bx = B′

x, and

(
Ey

Bz

)
=

(
γ βγ
βγ γ

)(
E′

y

B′

z

)
,

(
Ez

By

)
=

(
γ −βγ

−βγ γ

)(
E′

z

B′

y

)
.

(Note ~B → ~E, ~E → − ~B symmetry). Examples illustrate this: the electric field of a line

or plane of charge, vs the magnetic field if these charges are moving with velocity ~v.

There are two invariant combinations ~E2 − ~B2 and ~E · ~B. If ~E · ~B = 0, can find a

frame where either ~E′ = 0 or ~B′ = 0, depending on sign of ~E2 − ~B2.

• Maxwell’s equations (in the Gaussian / CGS units that are nice for relativity)

∇ · E = 4πρ ∇ ×B −
1

c

∂E

∂t
=

4π

c
J,

∇ ·B = 0, ∇ × E +
1

c

∂B

∂t
= 0.

can be written as two 4-vector equations:

∂

∂xµ
Fµν =

4π

c
jν ,

∂

∂xµ
F̃µν =

4π

c
j̃ν = 0,

where jµ = (cρ, ~J) is the electric charge density and current density, which combine into

a 4-vector, and F̃µν is related to Fµν by ~E → ~B and ~B → −~E, and j̃ν = 0 reflects the

non-observance of magnetic monopoles.
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Charge conservation is invariant under Lorentz transformations;

∂ρ

∂t
+ ~∇ · ~J ≡

∂

∂xµ
jµ = 0

It is required by Maxwell’s equations since ∂µ∂νF
µν = 0 by the symmetry of the two

derivatives and antisymmetry of Fµν .

The ∂
∂xµ F̃

µν = 0 Maxwell equations can be solved by introducing the scalar and

vector potential, ~E = −∇φ − 1
c
∂ ~A
∂t ,

~B = ∇ × ~A, which can be written relativistically as

Fµν ≡ ∂µAν − ∂νAµ. Then Lorentz transformations of ~E and ~B then follow from ∂µ and

Aµ ≡ (φ, ~A) being 4-vectors.

The wave equation for light as an electromagnetic wave in vacuum (so jµ = 0) can be

written as ∂µ∂
µ ~E = ∂µ∂

µ ~B = 0, which is invariant since ∂ ·∂ = ∂′ ·∂′ and the components

of ~E and ~B mix according to the above Lorentz transformation, but will still satisfy the

same wave equation in every inertial frame.

• Different example: uniformly accelerated motion along the x axis: find aµ = duµ

dτ

such that u · u = c2, u · a = 0, and a · a = −g2 for proper acceleration g. The solution has

v = dx/dt = c tanh(gτ/c), which reduces to v ≈ gt and t ≈ τ for small velocities. Then

uµ = c(cosh gτ/c, sinh gτ/c, 0, 0) and aµ = g(sinh(gτ/c), cosh(gτ/c), 0, 0); note that these

satisfy all the conditions. Integrating, get x = c2g−1(cosh(gτ/c) and t = cg−1 sinh(gτ/c).

For gτ/c ≪ 1, get t ≈ τ and x ≈ 1
2gt

2, i.e. the usual expressions for constant acceleration.

The relativistic expressions asymptote for gτ/c ≫ 1 to x ≈ c2egτ/c/2g and t ≈ cegτ/c/2g.

• Now, for a bit of general relativity. Emphasize minertial and mgrav and the equiv-

alence principle, leading to agrav independent of mass. Led to Einstein’s equivalence

principle: no difference between gravity and gravity. Freely falling observer doesn’t notice

gravity. Accelerating observer sees something equivalent to gravity’s “force.” Einstein used

this to replace gravity with spacetime curvature. What it means:

1. Replace ηµν with a spacetime metric gµν (a.k.a. the “fabric of space-time”), which

is affected by masses according to a differential equation called Einstein’s equations

(analog of Maxwells equations, but more complicated because it’s not linear). Let’s

mention one solution of these equations: for a mass M at the origin, the solution

is called the Schwarzschild metric (the gravity analog of the electric field of a point

charge):

ds2 ≡ gµνdx
µdxν = (1− (2GM/r))(cdt)2− (1− (2GM/r))−1dr2− r2(dθ2+sin2 θdφ2).
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For M = 0, this reduces to the interval we’ve been discussing, gµν → ηµν , just written

in spherical coordinates. For M 6= 0, this approximates to the interval we’ve been

discussing when r ≫ 2GM , where spacetime is approximately flat and unaffected by

the mass M . For 2GM/r non-negligible, the effects of the curved spacetime have to

be accounted for.

2. If there are no external forces, then fµ = mDuµ

dτ = 0 says that 4-velocity is constant.

Gravity is not added as an external force, here fµ are just the forces other than

gravity. Instead, gravity’s effects are all in gµν , and gµν is hiding in the D
dτ

(which is

why it’s written here with D instead of d, as a reminder). This gives what is called the

geodesic equation: the object moves along the extremal distance in space-time. Recall

that the straight path in flat spacetime has longest proper length, and this is the path

of a non-accelerated object. Likewise, the earth goes around the sun following the

analog of a straight-line path, but in the curved spacetime metric gµν of the sun. We

see an apparent inward acceleration, but the true relativistically defined acceleration,

accounting for spacetime curvature, is actually zero.

• The ds2 = (1− 2GM/r)(cdt)2 + . . . term means that clock rates depend on r. The

clock records the wristwatch or proper time ds2 = (cdτ)2, not the coordinate time dt.

Suppose Alice is at rA and Bob is at rB , then dτA,B =
√
1− (2GM/rA,B)dt. Suppose

Alice is at the top of the Eiffel tower and Bob is at the bottom, then dτA > dτB, Alice

ages more. Atomic clocks are sufficiently precise to measure this difference, even for just

1 meter high difference in the earth’s gravity field.

Suppose Alice drops photons down to Bob. Alice’s photons have frequency ωemit =

2π/τA, while the photons Bob receives have frequency ωreceive = 2π/τB, where the period

is the corresponding proper time. Since τA > τB, ωreceive > ωemit. This can be roughly

understood as saying that photons at the bottom are gravitationally blueshifted because of

they picked up energy in their fall, somewhat analogous to the gain in kinetic energy of a

falling mass. Likewise, when a photon has to climb up, out of a gravitational potential, it’ll

be redshifted. Pound and Rebka directly measured this back in 1959 by sending photons

down from the 4th floor of the Harvard Physics building to the basement (22 meters, about

74 feet). The key to measure the small frequency shift was to use the Mossbauer effect

(found in 1958).

• Black holes: if robject < 2GM , there is an event horizon at rH = 2GM . According

to the equivalence principle, an infalling observer can cross rH without much drama, and
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the apparent singularity of ds2 there is just a coordinate artifact of a global issue: the time

and space coordinates become exchanged. Time now points into the actual singularity of

the metric, which is at r = 0. There are many scientific debates about how to reconcile the

equivalence principle with quantum mechanics, including the recent suggestion that there

has to be a firewall at rH to prevent some puzzles or potential mathematical contradictions

regarding entropy and information.

• Cosmology:

ds2 = (cdt)2 − a(t)2d~x2,

where the scale factor a(t) is determined by Einstein’s equations. Inflation or the big bang

theory leads to a rapid growth of a(t) in the early universe, from a(t) →≈ 0 around 13.798

×109 years ago. Supernova observations show that a(t) is accelerating in expansion, fitting

with a cosmological constant (vacuum energy) Λ ≈ (10−3eV )4. It’s a great challenge for

theorists to explain this tiny number: rough estimates are always much to big, by a factor

of roughly 10120. Although Λ is tiny, it accounts for over 68 percent of the Universe’s

energy budget, and that amount continues to grow as a(t) increases, since more space

means more energy of empty space.
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