
1/5/16 Lecture outline

• Last quarter, we learned canonical quantization, Dyson’s formulae, and Feynnman

diagrams. BTW, we are very fortunate to now have Dyson here at UCSD. In addition

to putting Feynman’s intuitions on firm footing in the early days of QFT, he has done so

many other things in his remarkably broad and long lifetime as a highly original, visionary

thinker. He is also very fun and approachable; you are encouraged to meet him.

In QM classes, the usual descriptions (Schodinger and Heisenberg) are based on using

the Hamiltonian, since that’s the generator of time translations. Also, in our canonical

quantization last quarter, time plays a special role – we had equal time commutation

relations, time ordered products, etc. Feynman found a completely new description of

QM, by intuitively thinking about double slit interference and realizing that empty space

can be thought of as being filled with screens that are full of holes, so such interference and

taking multiple paths is always there. The path integral generalizes immediately from QM

to QFT, and for different types of fields. Unlike canonical quantization, it makes Lorentz

and Poincare symmetry manifest, and also gives a way to define QFT beyond perturbation

theory. The classical limit is clarified, as the stationary phase limit of an integral. Similar

statements apply in optics. The path integral also helps to connect QFT with statistical

physics, with the path integral analogous to the partition function.

Recall from last quarter. The field φ(x) is analogous to q(t) in QM (indeed, QM is

a particular case of QFT in one dimension), and its conjugate momentum is Π = ∂L/∂φ̇.

These are operators, with equal time commutators

[φ(t, ~x),Π(t, ~x′)] = ih̄δ3(~x− ~x′).

We’ll usually set h̄ = 1. The S-matrix elements, used to compute scattering cross sections

and lifetimes etc. are computed from an amplitude 〈f |S|i〉 which is related to the vacuum

expectation values of time-ordered products of the fields. This is seen from Dyson’s formula

or from the LSZ derivation, to be discussed in more detail later:

〈f |i〉 = 〈k1′ . . . kn′ |k1 . . . kn〉

= in+n′

n′∏

j′=1

∫
d4x′je

ik′

jx
′

j (∂2j′ +m2)

n∏

j=1

e−ikjxj (∂2j +m2)Gn+n′(x1 . . . xn, x1′ . . . xn′),

(1)

where

Gn+n′(x1 . . . xn, x1′ . . . xn′) ≡ 〈0|Tφ(x1′) . . . φ(xn′)φ(x1) . . . φ(xn)|0〉. (2)
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Using Wick’s theorem,

T (φ1 . . . φn) =: φ1 . . . φn : + : all contractions,

gives Feynman’s rules for computing amplitudes, from Feynman diagrams.

• Our first topic will be to get an alternative derivation of the Feynman rules, using the

Feynman path integral. This gives an alternative to canonical quantization for quantizing

particles and fields, and additional insights into the Feynman diagrams and rules. First

consider particle quantum mechanics (QFT in d = 1 + 0 spacetime dimensions). The

probability amplitude to go from position q at time t to q′ at time t′ is 〈q′, t′|q, t〉. Let’s

write this as the time evolution operator

U(xa, xb;T ) = 〈xb|e
−iHT/h̄|xa〉.

Satisfies SE

ih̄∂TU = HU.

Feynman:

U(xa, xb;T ) =

∫
[dx(t)]eiS[x(t)]/h̄.

Integral can be broken into time slices, as way to define it.

E.g. free particle

(
−im

2πh̄ǫ

)N/2 ∫ N−1∏

i=1

dxi exp[
im

2h̄ǫ

N∑

i=1

(xi − xi−1)
2]

Where we take ǫ→ 0 and N → ∞, with Nǫ = T held fixed.

Do integral in steps. Apply expression for real gaussian integral (valid: analytic

continuation): ∫ ∞

−∞

dφ exp(iaφ2) =

√
iπ

a
.

where we analytically continued from the case of an ordinary gaussian integral. Think of

a as being complex. Then the integral converges for Im(a) > 0, since then it’s damped.

To justify the above, for real a, we need the integral to be slightly damped, not just purely

oscillating. To get this, take a→ a+ iǫ, with ǫ > 0, and then take ǫ→ 0+. We’ll see that

this is related to the iǫ that we saw last quarter in the Feynman propagator, which gave

the T ordering.
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After n− 1 steps, get integral:

(
2πih̄nǫ

m

)−1/2

exp[
m

2πih̄nǫ
(xn − x0)

2].

So the final answer is

U(xb, xa;T ) =

(
2πih̄T

m

)−1/2

exp[im(xb − xa)
2/2h̄T ].

Note that the exponent is eiScl/h̄, where Scl is the classical action for the classical

path with these boundary conditions. (More generally, get a similar factor of eiScl/h̄ for

interacting theories, from evaluating path integral using stationary phase.)

Plot phase of Uas a function of x = xb − xa, fixed T , Lots of oscillates. For large x,

nearly constant wavelength λ, with

2π =
m(x+ λ)2

2h̄T
−

2x2

2h̄T
≈
mxλ

h̄T
= pλ/h̄.

Gives p = h̄k.

Recover ψ ∼ eipx/h̄. More generally, get p = h̄−1k, with p = ∂Scl/∂xb (can show

p = ∂L/∂ẋ = ∂Scl/∂xb. Can also recover ψ ∼ e−iωT , with ω = h̄−1(−∂Scl/∂tb). Agrees

with E = h̄ω, since E = pẋ− L = −∂Scl/∂tb.

• Nice application: Aharonov-Bohm. Recall L = 1
2
m~̇x

2
+ q~̇x · ~A − qφ. Solenoid with

B 6= 0 inside, and B = 0 outside. Phase difference in wavefunctions is

ei∆S/h̄ = eiq
∮

~A·d~x/h̄ = eiqΦ/h̄.

Aside on Dirac quantization for magnetic monopoles.

• Can derive the path integral from standard QM formulae, with operators, by intro-

ducing the time slices and a complete set of q and p eigenstates at each step.

〈q′, t′|q, t〉 =

∫ ∫ N∏

j=1

dqj〈q
′|e−iHδt|qN−1〉〈qN−1|e

−iHδt|qN−2〉 . . . 〈q1|e
−iHδt|q〉,

where we’ll take N → ∞ and δt → 0, holding t′ − t ≡ Nδt fixed. Note that even

though eA+B = eAeBe−
1
2
[A,B]+..., we’re not going to have to worry about this for δt→ 0:

e−iHδt = e−iδtp2/2me−iδtV (q)eO(δt2). Now note

〈q2|e
−iHδt|q1〉 =

∫
dp1〈q2|e

−iδtp2/2m|p1〉〈p1|e
−iV (q)δt|q1〉,
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=

∫
dp1e

−iH(p1,q1)δteip1(q2−q1).

This leads to

〈q′, t′|q, t〉 =

∫
[dq(t)][dp(t)] exp(i

∫ t′

t

dt(p(t)q̇(t)−H(p, q))),

and taking H quadratic in momentum and doing the p gaussian integral recovers the

Feynman path integral.

• The same derivation as above leads to e.g.

〈q4, t4|T q̂(t3)q̂(t2)|q1, t1〉 =

∫
[dq(t)]q(t3)q(t2)e

iS/h̄,

where the integral is over all paths, with endpoints at (q1, t1) and (q4, t4).

A key point: the functional integral automatically accounts for time or-

dering! Note that the LHS above involves time ordered operators, while the RHS has a

functional integral, which does not involve operators (so there is no time ordering). The

fact that the time ordering comes out on the LHS is wonderful, since know that we’ll

need to have the time ordering for using Dyson’s formula, or the LSZ formula, to compute

quantum field theory amplitudes.
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