
3/13/17 Lecture 15 outline

Recall the definition of the future and past event horizons of a space-time: null hyper

surfaces intersecting I±.

A stationary metric has a killing vectorKµ = ∂µ
t . We can choose metric s.t. ∂tgµν = 0.

Choose r such that r = const hyper surfaces remain timeline until some rH , where they

become null. This is an event horizon. The normal to the hupersurface is ∂µr and its norm

is gµν∂µr∂νr = grr, so the event horizon has grr(rH) = 0.

Recall for asymptotically flat space-time, normalize Kµ such that KµK
µ(r → ∞) →

−1. For a static observer, Kµ = V (x)Uµ, where V = −
√

KµKµ. Recall the energy of a

photon is E = −pµK
µ and the frequency measured by an observer with Uµ is ω = −pµU

µ,

so ω = E/V . A static observer hovering at fixed spatial coordinates has acceleration

aµ = Uσ∇σU
µ = ∇µ lnV . The acceleration magnitude is a =

√
aµaµ = V −1

√
∇µV∇µV .

The surface gravity at the event horizon is κ = V a =
√
∇µV∇µV . Picture a string from a

static object at the horizon connecting to an observer at infinity, then the surface gravity

is the acceleration of the end at infinity.

Define the stationary limit surface to be where KµK
µ changes sign, i.e. where g00 = 0.

Beyond there, one cannot remain at fixed spatial coordinates. For a Schwarzschild black

hole both the stationary limit surface and the event horizon are at r = 2GM .

• Charged Reissner-Nordstrom black holes:

ds2 = −H(r)dt2 +H(r)−1dr2 + r2dΩ2,

H = 1− 2GM

r
+

G(Q2 + P 2)

r2
,

whereQ is the electric charge and P is the magnetic charge, and Er = Q/r2 and Br = P/r2.

The event horizon is where H = 0 and there are two solutions:

r± = GM ±
√

G2M2 −G(Q2 + P 2).

So there are two, one, or zero solutions depending on if GM2 is bigger than, equal, or less

than Q2 + P 2.

The conformal diagram of the Q2+P 2 > GM2 case looks similar to Minkowski space,

but with a naked singularity at r = 0. According to the cosmic censorship conjecture, such

black holes can never form.
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Now consider the GM2 > Q2 + P 2 case. The metric has coordinate singularities at

r±, which can be removed by an analog of Kruskal coordinates. r± are both null event

horizons. The singularity at r = 0 is different from Schwarzschild: it is time-like instead

of space-like. If you fall in, the inward r direction switches from pointing in a space like

direction to being time-like at r+, just as in Schwarzschild, but then it switches back to

being space-like after crossing r−. So once you cross r− you can avoid hitting r = 0. You

could even cross back to r > r−. Then your time direction would point towards increasing

r, and you’ll be spit out at r+, like a white hole. Draw conformal diagram.

Finally, consider the extremal case GM = Q2 + P 2. So one event horizon at r =

GM , but r coordinate is never time-like: it is null at r = GM but space-like on either

side. r = 0 is again a time-like line. Draw the conformal diagram. The extremal case

has an exact cancellation between the gravitational attraction and the electric replusion.

Correspondingly, it is easy to construct exact solutions of GR with arbitrary numbers of

extremal BHs (something that cannot be done with other solutions e.g. Schwarzschild).

These BHs can be regarded as the bosonic part of supersymmetric solutions called BPS

configurations, which have a generalization of the no force property.

• Kerr black holes:

ds2 = −Σ−1(∆− a2 sin2 θ)dt2 − 2aΣ−1 sin2 θ(r2 + a2 −∆)dtdφ+

+Σ−1((r2 + a2)2 −∆a2 sin2 θ) sin2 θdφ2 + Σ∆−1dr2 + Σdθ2.

Here Σ = r2 + a2 cos2 θ and ∆ = r2 + a2 +Q2 − 2GMr and the gauge field is

Aµdx
µ = −QrΣ−1(dt− a sin2 dφ),

where Q is the electric charge, as measured by the flux through a sphere at infinity, and

Ma = J is the angular momentum (as measured through a large sphere at infinity). The

metric is t and φ independent, so it admits Killing vectorsKµ = ∂µ
t and Rµ = ∂µ

φ . The dtdφ

cross term means that it is stationary but not static, corresponding to the BHs rotation,

which frame-drags spacetime along with it.

For r ≫ M and r ≫ a, note that

ds2 ≈ (1− 2GM

r
)dt2 + (1 +

2GM

r
)dr2 + r2dΩ2 − 4Ma

d2
sin2 θ(rdφ)dt+ . . . .
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Recall for gµν = ηµν+hµν with hµν small, that h00 = −2Φ, h0i ≡ wi etc andHi ≡ ǫijk∂hwk

is analogous to a magnetic field in that it leads to a ~̇p = E~v × ~H + . . . term, which here is

a rotational term ~̇p = ~Ω× ~p+ . . . with ~Ω pointing in the φ̂, i.e. ẑ direction.

The full Kerr metric exhibits several interesting locations:

(i) The place where g00 = 0 is called the stationary limit surface.

(ii) The places where grr = 0 are event horizons.

(iii) The places where Σ = 0 are singularities for M, a 6= 0.

As a warmup consider first Q = M = 0. Then the Kerr solution is simply Minkowski

space in ellipsoidal coordinates: x =
√
r2 + a2 sin θ cosφ, y =

√
r2 + a2 sin θ sinφ, z =

r cos θ. Then r = 0 is a two dimensional disk of radius a and its intersection with θ = π/2

is the ring at the boundary of this disk.

Now consider M 6= 0 and a 6= 0. Computing RµνρσR
µνρσ find that it is singular

at Σ = 0, i.e. at r = 0, θ = π/2, i.e. at the above-mentioned ring of radius a in the

z = 0 plane (orthogonal to the angular momentum). So the spinning changes the point

singularity to a ring singularity. The horizon is at ∆ = 0. If Q2 + a2 > M2, there

is no ∆ = 0 solution, hence a naked singularity. Can go backwards in time and have

closed timeline curves in that case by circling around the singularity. For Q2 + a2 ≤ M2,

∆ = 0 for r = r± = M ±
√

M2 −Q2 − a2, the outer and inner horizon. These are

coordinate singularities and the space-time can be extended past them. Spacetime can be

extended to negative r. Closed time-like curves at the ring singularity, e.g. wind in φ:

ds2 ≈ a2(1 + 2GM/r)dφ2 which can be negative for small negative r.

Null vector at r = r+ is ℓµ = Kµ + ΩHRµ, with ΩH = a/2Mr+. The null ℓµ are

tangent vectors to the light rays that form the horizon. These light rays are rotating

with angular velocity ΩH ; this is frame dragging. A photon emitted in the φ direction at

θ = π/2 has ds2 = 0 = gttdt
2 + 2gtφdtdφ+ gφφdφ

2, so

dφ

dt
= − gtφ

gφφ
±

√
(
gtφ
gφφ

)2 − gtt
gφφ

.

At the stationary limit surface the two solutions are dφ
dt

= 0 and dφ
dt

= a/(2G2M2 + a2),

corresponding to going against the rotation or with the rotation. The angular velocity of

the event horizon is ΩH = (dφ
dt
)−(r+) = a/(r2+ + a2).

Consider an observer who, with help from a rocket, tries to keep their r, θ, φ values

unchanging. In Schwarzschild, this can be done for r > 2GM . Now consider the case for

Kerr, trying to keep uµ
obs = (ut

obs, 0, 0, 0) with uµu
µ = −g00u

t
obs

2 = −1. The place where
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g00 = 0 defines the stationary limit surface, rsls. For r < rsls it is impossible to have

uobs with only time-like components, even with an arbitrarily powerful rocket. Inside this

region is the ergosphere, where uobs = ut
obs(1, 0, 0,Ωobs), rotating in the φ direction along

with the BH.

Consider a geodesic orbit in the Kerr geometry, say at θ = π/2. There is conserved

e = −K · u and ℓ = R · u, where u · u = −1 for a massive, time-like orbiter. Find

1

2
(e2 − 1) = 1

2
(
dr

dτ
)2 + Veff ,

Veff = −GM

r
+

ℓ2 − a2(e2 − 1)

2r2
− M(ℓ− ea)2

r3
.

Note that it is not ℓ → −ℓ symmetric: the effective potential differs whether the orbiter’s

rotation is aligned or anti-aligned with that of the BH. The sign of the potential helps to

avoid violating cosmic censorship, i.e. avoid having a > M , because particles with ℓ too

big can’t fall in.

Extracting energy from a Kerr black hole. In a free falling frame, energy and mo-

mentum conservation is pµin = pµout + pµBH . Use Kµ to get energies: Eout = Ein − EBH .

But if the particle going into the BH is inside the ergosphere, then KµK
µ = g00 > 0 and

EBH < 0. The outgoing particle can have more energy than the incoming one – it has

extracted energy from the ergosphere. Consider an observer inside the ergosphere with

uµ
obs = ut

obs(K
µ + ΩobsR

µ). They must measure a positive energy going into the BH, so

−(K + ΩobsR) · pBH ≥ 0. This gives EBH ≥ ΩobsLBH where LBH = mBHℓBH is the

angular momentum of the particle that fell into the black hole. Since Ωobs > 0, negative

EBH requires negative LBH , so the energy extraction also extracts angular momentum

from the BH. This is called the Penrose process. We will see that the area of the black

hole increases in the Penrose process, even though energy and angular momentum are

being extracted. This is a special case of the general black-hole area increase theorems of

classical GR. This is the starting point for black hole thermodynamics: black holes have an

entropy S = A/4G, and the area-increase theorem is then the 2nd law of thermodynamics.

This was a starting point for Hawking’s observation that black holes are quantumly hot,

and radiate like a thermal blackbody with a temperature TH . More on this in a later week.

Because Kerr is stationary but not static, the event horizons at r± are not Killing

horizons for the asymptotic time-translation Killing vector K = ∂t. The norm of Kµ is

KµK
µ = −Σ−1(∆ − a2 sin2 θ), so at the outer horizon KµK

µ = a2Σ−1 sin2 θ ≥ 0: it is

space like at the outer horizon, and null at the poles. The stationary limit surface is where
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KµK
µ = 0, i.e. at (rs.l.s − GM)2 = G2M2 − a2 cos2 θ, which has rs.l.s. ≥ r+, touching

the outer horizon at the north and south poles. The region between rs.l.s. and r+ is the

ergosphere. Once inside the ergosphere, it is impossible to not rotate with the BH in the

φ direction, but you can still move either to or away from the event horizon.

If you go inside the ring singularity, you exit to another asymptotically flat space-time,

but not an identical copy of the original one. The new space-time is like Kerr with r < 0

so ∆ 6= 0 and there are no horizons.

Compare the conformal diagrams of eternal Schwarzschild vs eternal Kerr Newmann.
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