
2/8/17 Lecture 9 outline

• Recall from last time: de Sitter, anti- de Sitter, and Minkowski space are all confor-

mally equivalent to the Einstein static universe.

de Sitter cosh(t/C) = 1/ cos t′:

ds2 =
C2

cos2(t′)
ds̄2, ds̄2 ≡ −(dt′)2 + dχ2 + sin2 χdΩ2

2.

Here −π/2 < t′ < π/2. Represent dS by a square, with t′ on the y axis and χ ∈ [0, π]

on the x axis. Spacelike slices are S3s, so each point on the diagram is an S2, except the

edges χ = 0 and χ = π are points, the North and South poles of the S3. Diagonal lines are

null rays. So a photon released at past infinity will get to an antipodal point on the sphere

at future infinity. Note that points can have disconnected past or future light cones: the

spherical spatial sections are expanding so light from one point cannot necessarily get to

another.

Likewise anti-de Sitter: cosh ρ = 1/ cosχ

ds2 =
C2

cos2 χ
ds̄2,

where now 0 ≤ χ < π/2 and t′ is extended to run from −∞ to +∞.

Likewise, consider flat Minkowski space-time in spherical coordinates, ds2 = −dt2 +

dr2 + r2dΩ2
2. Now take u = t − r, v = t + r, U = arctanu, V = arctan v, T = V + U ,

R = V −U , to get a patch of the Einstein static universe, with 0 ≤ R < π and |T |+R < π.

Past time-like infinity i− is T = −π, R = 0; future time-like infinity i+ is T = π, R = 0,

spatial infinity i0 is T = 0, R = π, future and past null infinity, called scri I±, are

T = ±(π −R), for 0 < R < π.

• Compare the causal structure of the three above cases (following Hawking and Ellis’

The Large Scale Structure of Spacetime). In Minkowski, any future-directed timeline

geodesic asymptotes to i± in the limit of τ → ±∞. So time-like geodesics start at i− and

end at i+. Likewise, null geodes start on I− and end on I+. These are only statements

about geodesics, e.g. can write non-null time-like paths from I− to I+. Cauchy surfaces,

space-like and intersecting all time-like and null geodesics, end on i0. Draw non-radial

version of the surface, with light cones etc.

Now de Sitter space. Again, there are points on the space that are not joined by

any geodesic. Recall square Penrose diagram: I− is the lower boundary and I+ is the
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upper boundary. There are no boundaries on the left and right edges (draw them with

dashed lines), they are coordinate boundaries corresponding to the poles of a S2. The old

steady-state universe (Hoyle) was the region t′ > χ−π/2, with i= at the lower left corner,

χ = 0, t′ = −π/2, and i0 at the upper-right corner, t′ = π/2, χ = π, and I− the null

diagonal connecting them.

de Sitter has a space like boundary for both time-like and null geodesics. Compare

past light cone of a point in de Sitter vs Minkowski. The past null cone of a point p in

de Sitter intersects I− and leads to a horizon, with other particle’s world lines outside

the horizon. In Minkowski space, all particle geodesic world lines pass through the past

light cone at any point p. So in de Sitter there are, at any given time, particles outside

of the past light cone, whose effects cannot yet be seen. As observer’s time increases,

more and more particles come into the horizon. Likewise future light cones to I+, with

some outside particles that will never be observable to the observer. Consider observer’s

trajectory from I− to I+ and draw light cones for both. The region inside both is the

maximal set of space-time events that O could have possibly influenced. Minkowski space-

time does not have past or future horizons for geodesic observers (accelerated observers

can have horizons). In the old steady state universe, there is a future horizon but no past

horizon. Consider world-lines of observers O and Q in de Sitter, with Q initially outside

of O’s past null cone at some point p. Later Q’s comes into O’s future infinity null cone.

So from O’s perspective, Q can appear at some point, if looking through a telescope. Note

that O thereafter never sees Q disappear, even though Q’s world line can go out of O’s

future null cone. From O’s point of view, an infinite amount of proper time passes as Q is

approaching the point r where it goes outside of the future null cone. There is a redshift

that approaches infinity for the light that O sees as Q approaches r. From Q’s perspective,

nothing special happens at r, they just pass right through in finite proper time. If Q is

looking at O, they see O as having a huge redshift at a different time, and they likewise

never see O disappear.

Finally anti-de Sitter space-time which has a time-like boundary with topology a

hemisphere of S3. The points i− and i+ are at t′ → ∓∞ in the strip. Null rays can go

from e.g. point p at t′ = −π/2, χ = 0 to t′ = 0, χ = π/2. Then the light ray can reflect

off that boundary and go back to χ = 0, reaching it at t′ = π/2, point q. This is like the

triangular region of Minkowski space, and any time-like geodesic starting at t′ = −π/2

and χ = 0 will stay within this region. So such time-like observers see a space-time causal

structure that is no different than Minkowski space. Such time-like observers never reach
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the boundary at χ = π/2, they refocus to point q in their infinite future. A god-like

global observer, however, can see that the space-time continues for infinite t′ in the past

and future. There is no well-defined Cauchy surface, since any space-like surface will have

future geodesics that do not intersect.

• If we assume the n+1
2n(n−1) translational and space-time rotational Killing vectors,

we have only the above three solutions of Einstein’s equations. Now let’s look for different

solutions by assuming only translational and rotational symmetry in the space directions.

The space directions are then a maximally symmetric space, and the time direction is

allowed to differ, subject to Einstein’s equations. These are the Robertson Walker space

times.

ds2 = −dt2 + a2(t)dΣ2,

where the 3d space dΣ2 is maximally symmetric. Again, three possibilities: the 3d space

can have k = R3d/6 negative (open), positive (flat), or positive (closed). By a choice of

coordinates,

dΣ2 =
dr2

1− kr2
+ r2dΩ2

with k = 0, 1,−1. Or

dΣ2 = dχ2 + f(χ)2(dθ2 + sin2 θdφ2),

with f(χ) = sinχ, χ, sinhχ, respectively, for k = 1, 0,−1. The χ ranges are χk=0,−1 ∈

[0,∞] and χk=1 ∈ [0, π]. The k = 0,−1 cases are infinite, topologically R3, while the k = 1

case is closed, topologically S3.

The symmetry of the RW space times require that the energy-momentum tensor be

that of a perfect fluid: Tµν = (p + ρ)UµUν + pgµν . Conservation of energy requires

ρ̇/ρ = −3(1 + w)ȧ/a, where w ≡ p/ρ. For constant w this gives ρ ∼ a−3(1+w). Recall

e.g. that the null dominant energy condition conjecture is |w| ≤ 1. Einstein’s equations

(Gµνu
µuν = 8πGρ and Gµνs

µsν = 8πGp) lead to the Friedmann equations:

(

ȧ

a

)2

=
8πG

3
ρ−

k

a2
,

ä

a
= −

4πG

3
(ρ+ 3p).

For a 6= 0, the first equation can be obtained as the integral of the second one. It gives

the constant of integration as being equal to the same constant k.
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As found by Einstein, if ρ and p are non-negative, it is impossible to have a constant.

He introduced a cosmological constant component, which has pΛ = −ρΛ, to get constant a,

which he later referred to as his greatest blunder (though he turned out to be right about

Λ 6= 0).

It follows from the energy conservation equation that ρ decreases as the universe

expands, and was higher in the past. As a → 0, ρ → ∞, so a → 0 is a physical singularity,

not just a harmless coordinate singularity. As a → 0, space-time is singular, and Einstein’s

equations must break down before then, e.g. quantum effects must kick in. The past

singularity ”big bang” is there for all cases with ρ + 3p > 0. It can be evaded by e..g

a positive Λ. For ρ and p non-negative, one can ask if the singularity can be evaded by

a non-spherically symmetric configuration. Hawking proved in his PhD thesis that the

singularity is still there, with fewer and fewer assumptions: singularity theorems. Will

touch on them more later.

The Hubble parameter H ≡ ȧ(t) is currently the Hubble constant H0 = H(t0).

H(t0)
−1 ≈ 9.78−1h−1 × 109 years, with h ≈ .72. Let ρcrit ≡ 3H2

0 .8π ≡ 1.99 ×

10−29h2g/cm3. Define Ωm,r,v ≡ ρm,r,v/ρcrit. Matter has pm ≈ 0, radiation (blackbody

spectrum) has pr = ρr/3, and vacuum CC has pv = −ρv. If Ω = Ωv + Ωr + Ωv = 1, then

k = 0 and the universe is flat. This is what observation suggests to be the case in our

universe: Ωm ≈ 4.6%, Ωd.m. ≈ 24%, Ωv ≈ 71.4%. The scaling of ρ(t) is such that radiation

dominated for t → 0, then matter, and finally vacuum.

For k = 0 and k = −1, and ρ > 0, note that ȧ > 0 so the universe will expand forever.

For any matter with p > 0, ρ must decrease as a increases at least as rapidly as a−3, so

ρa2 → 0 as a → ∞. So For k = 0 the expansion velocity ȧ → 0 as τ → ∞, and for k = −1,

ȧ → 1. For k = 1, the universe cannot expand forever: eventually RHS wants to become

negative, but the LHS is positive, so a ≤ acrit and this happens for finite t. There is a

bounce, where a → acrit and then the universe re-contracts. A finite t after the big bang,

a → 0 again, in a big crunch. The spatially closed 3-sphere universe will only exist a finite

span of time.

Get ρ ∼ a−n with equation of state w = 1
3n − 1. Matter has n = 3 (so w = 0),

radiation has n = 4 (so w = 1/3), curvature has n = 2 (so w = −1/3), and vacuum has

n = 0, so w = −1. For example, the Einstein static universe is a solution with ρΛ = 1
2ρM ;

it is topologically R × S3.
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