1. (Based on Sakurai 2.33) Derive an explicit expression for the momentum space propagator $\tilde{K}\left(\vec{p}_{2}, t_{2} ; \vec{p}_{1}, t_{1}\right) \equiv\left\langle\vec{p}_{2}\right| U\left(t_{2}, t_{1}\right)\left|\vec{p}_{1}\right\rangle$ for the case of a free particle. You can use the usual description of QM. As usual, we define $\tilde{K}=0$ if $t_{2}<t_{1}$. Derive it directly in momentum space, and also verify that it is related to the $\tilde{K}\left(\vec{x}_{2}, t_{2} ; \vec{x}_{1}, t_{1}\right)$ given in class by Fourier transforming.
2. Using your answer from the previous question, Fourier transform $t_{1,2} \rightarrow E_{1,2}$ to show that a free nonrelativistic particle has propagator

$$
\tilde{K}_{\text {free }}\left(\vec{p}_{2}, E_{2} ; \vec{p}_{1}, E_{1}\right)=(2 \pi \hbar)^{4} \delta^{3}\left(\vec{p}_{2}-\vec{p}_{1}\right) \delta\left(E_{2}-E_{1}\right) \frac{i}{E_{1}-\frac{p_{1}^{2}}{2 m}+i \epsilon}
$$

The ϵ here comes from something similar to the integral $\int_{0}^{\infty} e^{i \omega \tau} d \tau=\lim _{\epsilon \rightarrow 0^{+}} i(\omega+$ $i \epsilon)^{-1}$, where ω is given a small, positive imaginary part to make the integral converge.
3. Take space to be a 1 d periodic box of length $2 \pi R$, with $x \sim x+L$.
(a) Note that the momentum of a free particle of mass m on this space is quantized, $p=p_{n}=\ldots$ (write it down).
(b) Derive an expression for $K\left(x_{2}, t_{2} ; x_{1}, t_{1}\right)$ for a free particle of mass m on this space in terms of the Jacobi theta function $\theta(z ; \tau)=\sum_{n=-\infty}^{\infty} \exp \left(i \pi\left(n^{2} \tau+2 n z\right)\right)$.
4. (Sakurai 2.38) Consider the Hamiltonian of a spinless particle of charge e. In the presence of a static magnetic field, the interaction terms can be generated by $\vec{p}_{o p} \rightarrow$ $\vec{\Pi}=\vec{p}_{o p}-e \vec{A} / c$. Suppose $\vec{B}=B \widehat{z}$ for constant B and show that this leads to the correct expression between $\vec{\mu}_{\text {orbital }}=(e / 2 m c) \vec{L}$ and \vec{B}. Show that there is an extra term proportional to $B^{2}\left(x^{2}+y^{2}\right)$ and comment on its physical significance.
5. a) Verify (using the Schrodinger equation) that the probability current is still conserved for a charged particle in a magnetic field if we modify \vec{j} to $\vec{j}=$ $\left.-i(\hbar / 2 m) \psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)-(q / m c) \psi^{*} \psi \vec{A}$.
(b) Verify that \vec{j} is invariant under a gauge transformation $\vec{A} \rightarrow \vec{A}+\nabla f, \psi(\vec{x}, t) \rightarrow$ $e^{ \pm i q f / \hbar c} \psi(\vec{x}, t)$; check which sign works, and verify also that doing this transformation in both the Schrodinger equation and $\psi(\vec{x}, t)$, that f drops out.
6. (Sakurai 2.39) Evaluate $\left[\Pi_{x}, \Pi_{y}\right]$ for $\vec{B}=B \widehat{z}$, with B constant, compare to the 1 d SHO , and show it leads immediately to energy levels $E_{k, n}=\frac{p_{z}^{2}}{2 m}+|e B \hbar / m c|\left(n+\frac{1}{2}\right)$.

