Physics 212b, Ken Intriligator lecture 10, ऽ Feb 14, $2018 \odot$

- Time independent, a.k.a. stationary state perturbation theory. Suppose that $H=$ $H_{0}+H_{1}$, with H_{0} and H_{1} both time-independent. We suppose that $H_{1} \ll H_{0}$, e.g. there is a small parameter ϵ, with $H_{0} \sim \epsilon^{0}$ and $H_{1} \sim \epsilon^{1}$, and that we can do an expansion order-by-order in the small parameter, making corrections to the H_{0} case. The scheme only works if the H_{0} and H cases are qualitatively similar.
- E.g. a case where this fails is for $H_{0}=p^{2} / 2 m$ and $H_{1}=\epsilon \Theta(a-|x|)$. The energy eigenstates of H_{0} are the momentum eigenstates, with arbitrary p, and $E=p^{2} / 2 m$. The energy eigenstates for $\epsilon<0$ include a (parity even) bound state, whereas for $\epsilon>0$ there is no bound state. The $\epsilon \neq 0$ theory is qualitatively different from that with $\epsilon=0$. Generally speaking, perturbation theory will break down if there is a qualitative difference between when the small parameter is positive or negative; such a jump across $\epsilon=0$ indicates that the $\epsilon \rightarrow 0$ limit can have subtleties. This also happens in QFT, e.g. in QED if we take the fine structure constant $\alpha=e^{2} / 4 \pi \hbar c \approx 1 / 137$ as the small parameter, perturbation theory works quite well. But $\alpha<0$ is qualitatively different (non-unitary) showing that perturbation theory can have subtleties (e.g. it is an asymptotic expansion and non-perturbative effects can qualitatively change the results).
- Back to cases where perturbation theory (PT) works. At zero-th order, the energy eigenvalues and eigenstates are $H_{0}\left|E_{n, 0}\right\rangle=E_{n, 0}\left|E_{n, 0}\right\rangle$. The full energy eigenstates and eigenvalues are $H\left|E_{n}\right\rangle=E_{n}\left|E_{n}\right\rangle$. We initially assume that the energy levels are discrete and non-degenerate (more work is required for degenerate perturbation theory).

The unperturbed and perturbed energy eigenstates both form complete orthonormal bases $1=\sum_{n}\left|E_{n, 0}\right\rangle\left\langle E_{n, 0}\right|=\sum_{n}\left|E_{n}\right\rangle\left\langle E_{n}\right|$ and $\left\langle E_{n} \mid E_{m}\right\rangle=\left\langle E_{n, 0} \mid E_{m, 0}\right\rangle=\delta_{n, m}$. So $\left|E_{n}\right\rangle=\sum_{m}\left|E_{m, 0}\right\rangle\left\langle E_{m, 0} \mid E_{n}\right\rangle$.

Take $H_{1} \sim \epsilon$ the small parameter of our perturbation expansion. Then $E_{n}=$ $\sum_{L=0}^{\infty} E_{n, L}$, where $E_{n, L} \sim \epsilon^{L}$ and $\left\langle E_{m, 0} \mid E_{n}\right\rangle=\delta_{n, m}+\mathcal{O}(\epsilon)$. Let's write $\left|E_{n}\right\rangle=$ $\sum_{L=0}^{\infty}\left|E_{n, L}\right\rangle$ where we think of $\left|E_{n, L}\right\rangle \sim \epsilon^{L}$.

- Expand $\left(H_{0}+H_{1}\right)\left|E_{n}\right\rangle=E_{n}\left|E_{n}\right\rangle$ in ϵ. To order ϵ^{1} we have $H_{0}\left|E_{n, 1}\right\rangle+H_{1}\left|E_{n, 0}\right\rangle=$ $E_{n, 0}\left|E_{n, 1}\right\rangle+E_{n, 1}\left|E_{n, 0}\right\rangle$. Therefore $E_{n, 1}=\left\langle E_{n, 0}\right| H_{1}\left|E_{n, 0}\right\rangle$ via projecting on to $\left\langle E_{m \neq n, 0}\right|$:

$$
\left\langle E_{m, 0}\right| H_{1}\left|E_{n, 0}\right\rangle=\left(E_{n, 0}-E_{m, 0}\right)\left\langle E_{m, 0} \mid E_{n, 1}\right\rangle \quad(m \neq n) .
$$

The normalization condition to order ϵ implies that $\left\langle E_{n, 1} \mid E_{n, 0}\right\rangle=i C \epsilon$ where C is a real, order 1 constant. To this order, $1+i C \epsilon=e^{i C \epsilon}$ and we can eliminate this as an overall
phase of $\left|E_{n}\right\rangle$, so the first order correction can be taken to be purely orthogonal to the zero-th order term:

$$
\left|E_{n, 1}\right\rangle=\sum_{m \neq n} \frac{\left|E_{m, 0}\right\rangle\left\langle E_{m, 0}\right| H_{1}\left|E_{n, 0}\right\rangle}{E_{n, 0}-E_{m, 0}}=\frac{P_{n \perp}}{E_{n, 0}-H_{0}} H_{1}\left|E_{n, 0}\right\rangle
$$

where $P_{n \perp} \equiv 1-\left|E_{n, 0}\right\rangle\left\langle E_{n, 0}\right|$.

- At $\mathcal{O}\left(\epsilon^{2}\right): H_{0}\left|E_{n, 2}\right\rangle+H_{1}\left|E_{n, 1}\right\rangle=E_{n, 0}\left|E_{n, 2}\right\rangle+E_{n, 1}\left|E_{n, 1}\right\rangle+E_{n, 2}\left|E_{n, 0}\right\rangle$. Multiply both sides by $\left\langle E_{n, 0}\right|$ to get $\left\langle E_{n, 0}\right| H_{1}\left|E_{n, 1}\right\rangle=E_{n, 2}$ so

$$
E_{n, 2}=\sum_{m \neq n} \frac{\left.\left|\left\langle E_{m, 0}\right| H_{1}\right| E_{n, 0}\right\rangle\left.\right|^{2}}{E_{n, 0}-E_{m, 0}}
$$

Note that this is always negative for the ground state.

