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• Time independent, a.k.a. stationary state perturbation theory. Suppose that H =

H0 +H1, with H0 and H1 both time-independent. We suppose that H1 ≪ H0, e.g. there

is a small parameter ǫ, with H0 ∼ ǫ0 and H1 ∼ ǫ1, and that we can do an expansion

order-by-order in the small parameter, making corrections to the H0 case. The scheme

only works if the H0 and H cases are qualitatively similar.

• E.g. a case where this fails is for H0 = p2/2m and H1 = ǫΘ(a − |x|). The energy

eigenstates of H0 are the momentum eigenstates, with arbitrary p, and E = p2/2m. The

energy eigenstates for ǫ < 0 include a (parity even) bound state, whereas for ǫ > 0 there

is no bound state. The ǫ 6= 0 theory is qualitatively different from that with ǫ = 0.

Generally speaking, perturbation theory will break down if there is a qualitative difference

between when the small parameter is positive or negative; such a jump across ǫ = 0

indicates that the ǫ → 0 limit can have subtleties. This also happens in QFT, e.g. in

QED if we take the fine structure constant α = e2/4πh̄c ≈ 1/137 as the small parameter,

perturbation theory works quite well. But α < 0 is qualitatively different (non-unitary)

showing that perturbation theory can have subtleties (e.g. it is an asymptotic expansion

and non-perturbative effects can qualitatively change the results).

• Back to cases where perturbation theory (PT) works. At zero-th order, the energy

eigenvalues and eigenstates are H0|En,0〉 = En,0|En,0〉. The full energy eigenstates and

eigenvalues are H|En〉 = En|En〉. We initially assume that the energy levels are discrete

and non-degenerate (more work is required for degenerate perturbation theory).

The unperturbed and perturbed energy eigenstates both form complete orthonormal

bases 1 =
∑

n |En,0〉〈En,0| =
∑

n |En〉〈En| and 〈En|Em〉 = 〈En,0|Em,0〉 = δn,m. So

|En〉 =
∑

m |Em,0〉〈Em,0|En〉.

Take H1 ∼ ǫ the small parameter of our perturbation expansion. Then En =
∑∞

L=0
En,L, where En,L ∼ ǫL and 〈Em,0|En〉 = δn,m + O(ǫ). Let’s write |En〉 =

∑∞
L=0

|En,L〉 where we think of |En,L〉 ∼ ǫL.

• Expand (H0 +H1)|En〉 = En|En〉 in ǫ. To order ǫ1 we have H0|En,1〉+H1|En,0〉 =

En,0|En,1〉+En,1|En,0〉. Therefore En,1 = 〈En,0|H1|En,0〉 via projecting on to 〈Em 6=n,0|:

〈Em,0|H1|En,0〉 = (En,0 − Em,0)〈Em,0|En,1〉 (m 6= n).

The normalization condition to order ǫ implies that 〈En,1|En,0〉 = iCǫ where C is a real,

order 1 constant. To this order, 1 + iCǫ = eiCǫ and we can eliminate this as an overall
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phase of |En〉, so the first order correction can be taken to be purely orthogonal to the

zero-th order term:

|En,1〉 =
∑

m 6=n

|Em,0〉〈Em,0|H1|En,0〉

En,0 − Em,0

=
Pn⊥

En,0 −H0

H1|En,0〉

where Pn⊥ ≡ 1− |En,0〉〈En,0|.

• At O(ǫ2): H0|En,2〉 + H1|En,1〉 = En,0|En,2〉 + En,1|En,1〉 + En,2|En,0〉. Multiply

both sides by 〈En,0| to get 〈En,0|H1|En,1〉 = En,2 so

En,2 =
∑

m 6=n

|〈Em,0|H1|En,0〉|
2

En,0 −Em,0

.

Note that this is always negative for the ground state.
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