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e Time independent, a.k.a. stationary state perturbation theory. Suppose that H =
Hy + Hq, with Hy and H; both time-independent. We suppose that Hy < Hp, e.g. there
is a small parameter e, with Hy ~ € and H; ~ €', and that we can do an expansion
order-by-order in the small parameter, making corrections to the Hy case. The scheme
only works if the Hy and H cases are qualitatively similar.

e E.g. a case where this fails is for Hy = p?/2m and H; = €©(a — |z|). The energy
eigenstates of Hy are the momentum eigenstates, with arbitrary p, and E = p?/2m. The
energy eigenstates for € < 0 include a (parity even) bound state, whereas for € > 0 there
is no bound state. The € # 0 theory is qualitatively different from that with ¢ = 0.
Generally speaking, perturbation theory will break down if there is a qualitative difference
between when the small parameter is positive or negative; such a jump across ¢ = 0
indicates that the e — 0 limit can have subtleties. This also happens in QFT, e.g. in
QED if we take the fine structure constant o = e? /4mwhc ~ 1/137 as the small parameter,
perturbation theory works quite well. But a < 0 is qualitatively different (non-unitary)
showing that perturbation theory can have subtleties (e.g. it is an asymptotic expansion
and non-perturbative effects can qualitatively change the results).

e Back to cases where perturbation theory (PT) works. At zero-th order, the energy
eigenvalues and eigenstates are Hy|E, o) = E, 0/Eno0). The full energy eigenstates and
eigenvalues are H|E,) = E,|E,). We initially assume that the energy levels are discrete
and non-degenerate (more work is required for degenerate perturbation theory).

The unperturbed and perturbed energy eigenstates both form complete orthonormal
bases 1 = > |En0)(Enol = Y, |En)(En| and (Ey|En) = (EnolEmo) = 6nm. SO
|En) = 0 | Em,0)(Em,o|En)-

Take Hy ~ € the small parameter of our perturbation expansion. Then FE, =
S 7 oEnrL, where E, 1 ~ €& and (E,,|E,) = 6nm + O(e). Let’s write |E,) =
> 7 o |En 1) where we think of |E, 1) ~ €”.

e Expand (Hy + H1)|E,) = E,|E,) in €. To order ¢! we have Hy|E, 1) + H1|En ) =

EnolEni) + Eni|Enyo). Therefore E, 1 = (E, 0|H1|En,0) via projecting on to (Ey,n 0l

<Em,0

Hi|En0) = (Eno = Em0)(EmolEn1)  (m#n).

The normalization condition to order e implies that (E, 1|E, o) = iCe where C is a real,

order 1 constant. To this order, 1 + iCe = €'“¢ and we can eliminate this as an overall

1



phase of |E,), so the first order correction can be taken to be purely orthogonal to the

zero-th order term:

| Em.0)(Em,0lH1|En0) P,
|En,1> = Z =

= H,{|E,
” Eno—FEnmpo E,o0— Hy 11En.0)

where P, =1— |Ep0)(Eno
[ ] At 0(62)1 H()‘En’2> + H1|En’1> = En’0|En’2> —|— En,l
both sides by (E, o| to get (£, 0|H1|En 1) = £y 2 so

En’1> —+ En’2|En’0>. Multlply

[(Em,olH1|En,0)|?
Jope ’ AN
2 Z En,O - Em,O

m#n

Note that this is always negative for the ground state.



