Physics 212b, Ken Intriligator lecture 11, Feb 21, 2018
e Last time: time independent, a.k.a. stationary state perturbation theory, continued
H = Hy + Hy, with Hy ~ €® and H; ~ €', and that we can do an expansion order-by-
order in the small parameter, making corrections to the Hy case. To first order, E, ; =

<En’0 |H1 ‘En’0> and
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where the last condition is by a choice of overall phase. So
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where Zm/ means all states with E,, o # E, o and P, =1 — |E}, 0)(En0l. Note that
|Epn.1) = |n1) is not an eigenstate of either Hy or Hy; it is the order e correction to the

eigenstate of H. To second order

m, H E,
E, 2= (EnolH1|En1) Z B Ol —IEE (()))' .

Note that this is always negative for the ground state.

e Show that to the above order we have the expected result
En = (n|H|n) = ({no| + (na| +...)(Ho + Hx1)(|no) + [n1) +...).

(n|n) = (ng|ng) = 1 gives (ng|nz2) + (n2|ng) + (n1|n1) = 0, so (na|Ho|ng) + (no|Ho|nz) +

<N1‘H0|n1> = <N1‘H0 — En,o\nﬁ = —En’g, so to 0(62) get 2En’2 — En’g = En’g.
Eio Vio

M . We can diagonalize this
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e Example: two-state system with H = (

matrix to find the exact eigenvalues

Eio=21(Ei o+ Esp) £ \/ 2(Er0 — E20))? + [Vio|2.

The perturbative expansion follows by taking Vi3 = O(e) and Taylor expanding this ex-

pression. Find
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In agreement with our above expressions. The first order correction to E vanishes, and the
second order correction is BTW negative for the groundstate. The first order correction

to the eigenstates to zeroth and first order are
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Can check that it agrees with above.
e Example: SHO with H; = %emw%z, i.e. replace w — /1 + ew. The ground state

of the perturbed theory, to order € is computed from
Voo = (0O |H0©) = ehw/4, Voo = (2O)H,|0©) = ehw/2V/2.

Compute Eél) = tehw, and |0)) = —¢[2(9)) /41/2 and Eéz) = —hwe? /16, which indeed
agrees with expanding %hw\/l——f—e

e Stark effect: put an atom in an external electric field, treating ey as a perturbation.
Take Hy = eEyz for an electric field along the Z axis (the electron charge here is —e). Then
E,1 = eEy(Ey 0|z|Eno), which is zero by parity symmetry if the state is non-degenerate

(e.g. in the ground state of the hydrogen atom). To second order,
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It follows from the Wigner-Eckart theorem that (n', ', m'|z|n, £,m) o< 6,/ m&(er—g)2,1.. The
second order shift can be understood as polarizing the system, and the change in energy
is —3aE3 (you'll check this in HW examples).

For degenerate states, there is generally an effect already at first order; we need to
use degenerate perturbation theory.

e Degenerate perturbation theory: especially interesting case, where H; splits the
degenerate spectrum of Hy. Suppose the Hj eigenstates are |ng ), where k runs over
the degenerate space of Hj eigenvectors with eigenvalue E, o, say k = 1...K. Now
H{’s matrix elements on this space of states is a K x K matrix. If we naively apply the
above expressions, we run into problems with the denominator of e.g. (Ep2n0/En1) =
m(Em;én70|H 1|En,0) in the degenerate subspace. The solution is to diagonalize the
H; matrix elements on this space, so we get 0/0 instead of 1/0. Also, diagonalizing H;
in the degenerate space is needed for a smooth ¢ — 0 limit, since for any ¢ — 0% the

states are not eigenstates unless they diagonalize H;. The eigenvalues of the H; matrix
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are the first order correction E, ; j values. The expression for |n,1) is similar to that in
the non-degenerate case, where the Z;n is understood to be over states with Fy, o # E,, o,
i.e. excluding all of the states with energy E, o.

If some degeneracy remains at first order, one needs to diagonalize the matrix V,,s ,, +

Yom /Vanmn//(En,o — B, 0) where we take Hy — V' to reduce index clutter.



