
Physics 212b, Ken Intriligator lecture 11, Feb 21, 2018

• Last time: time independent, a.k.a. stationary state perturbation theory, continued

H = H0 + H1, with H0 ∼ ǫ0 and H1 ∼ ǫ1, and that we can do an expansion order-by-

order in the small parameter, making corrections to the H0 case. To first order, En,1 =

〈En,0|H1|En,0〉 and

〈Em 6=n,0|En,1〉 =
1

En,0 −Em,0
〈Em 6=n,0|H1|En,0〉, 〈En,0|En,1〉 = 0,

where the last condition is by a choice of overall phase. So

|En,1〉 =
∑

m

′ |Em,0〉〈Em,0|H1|En,0〉
En,0 −Em,0

=
Pn⊥

En,0 −H0
H1|En,0〉

where
∑

m

′

means all states with Em,0 6= En,0 and Pn⊥ ≡ 1 − |En,0〉〈En,0|. Note that

|En,1〉 ≡ |n1〉 is not an eigenstate of either H0 or H1; it is the order ǫ correction to the

eigenstate of H. To second order

En,2 = 〈En,0|H1|En,1〉 =
∑

m

′ |〈Em,0|H1|En,0〉|2
En,0 −Em,0

.

Note that this is always negative for the ground state.

• Show that to the above order we have the expected result

En = 〈n|H|n〉 = (〈n0|+ 〈n1|+ . . .)(H0 +H1)(|n0〉+ |n1〉+ . . .).

〈n|n〉 = 〈n0|n0〉 = 1 gives 〈n0|n2〉 + 〈n2|n0〉 + 〈n1|n1〉 = 0, so 〈n2|H0|n0〉 + 〈n0|H0|n2〉 +
〈n1|H0|n1〉 = 〈n1|H0 −En,0|n1〉 = −En,2, so to O(ǫ2) get 2En,2 − En,2 = En,2.

• Example: two-state system with H =

(
E1,0 V12

V ∗
12 E2,0

)
. We can diagonalize this

matrix to find the exact eigenvalues

E1,2 = 1
2 (E1,0 + E2,0)±

√
( 12(E1,0 −E2,0))2 + |V12|2.

The perturbative expansion follows by taking V12 = O(ǫ) and Taylor expanding this ex-

pression. Find

E1 = E1,0 +
|V12|2

E1,0 −E2,0
+ . . . , E2 = E2,0 +

|V12|2
E2,0 − E1,0
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In agreement with our above expressions. The first order correction to E vanishes, and the

second order correction is BTW negative for the groundstate. The first order correction

to the eigenstates to zeroth and first order are

|E1〉 =
(
1
0

)
+

V ∗
12

E1,0 − E2,0

(
0
1

)
+ . . . , |E2〉 =

(
0
1

)
+

V12

E2,0 −E1,0

(
1
0

)
+ . . .

Can check that it agrees with above.

• Example: SHO with H1 = 1
2 ǫmω2x2, i.e. replace ω →

√
1 + ǫω. The ground state

of the perturbed theory, to order ǫ is computed from

V00 = 〈0(0)|H1|0(0)〉 = ǫh̄ω/4, V2,0 = 〈2(0)|H1|0(0)〉 = ǫh̄ω/2
√
2.

Compute E
(1)
0 = 1

4ǫh̄ω, and |0(1)〉 = −ǫ|2(0)〉/4
√
2 and E

(2)
0 = −h̄ωǫ2/16, which indeed

agrees with expanding 1
2 h̄ω

√
1 + ǫ.

• Stark effect: put an atom in an external electric field, treating eE0 as a perturbation.

Take H1 = eE0z for an electric field along the ẑ axis (the electron charge here is −e). Then

En,1 = eE0〈En,0|z|En,0〉, which is zero by parity symmetry if the state is non-degenerate

(e.g. in the ground state of the hydrogen atom). To second order,

En,2 = e2E2
0

∑

m

′ |〈Em,0|z|En,0〉|2
En,0 −Em,0

.

It follows from the Wigner-Eckart theorem that 〈n′, ℓ′, m′|z|n, ℓ,m〉 ∝ δm′,mδ(ℓ′−ℓ)2,1.. The

second order shift can be understood as polarizing the system, and the change in energy

is −1
2αE

2
0 (you’ll check this in HW examples).

For degenerate states, there is generally an effect already at first order; we need to

use degenerate perturbation theory.

• Degenerate perturbation theory: especially interesting case, where H1 splits the

degenerate spectrum of H0. Suppose the H0 eigenstates are |n0,k〉, where k runs over

the degenerate space of H0 eigenvectors with eigenvalue En,0, say k = 1 . . .K. Now

H1’s matrix elements on this space of states is a K ×K matrix. If we naively apply the

above expressions, we run into problems with the denominator of e.g. 〈Em 6=n,0|En,1〉 =
1

En,0−Em,0

〈Em 6=n,0|H1|En,0〉 in the degenerate subspace. The solution is to diagonalize the

H1 matrix elements on this space, so we get 0/0 instead of 1/0. Also, diagonalizing H1

in the degenerate space is needed for a smooth ǫ → 0 limit, since for any ǫ → 0+ the

states are not eigenstates unless they diagonalize H1. The eigenvalues of the H1 matrix
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are the first order correction En,1,k values. The expression for |n, 1〉 is similar to that in

the non-degenerate case, where the
∑′

m is understood to be over states with Em,0 6= En,0,

i.e. excluding all of the states with energy En,0.

If some degeneracy remains at first order, one needs to diagonalize the matrix Vn′,n+∑
m

′

VnmVmn′/(En,0 − Em,0) where we take H1 → V to reduce index clutter.
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