Physics 212b, Ken Intriligator lecture 11, Feb 21, 2018

- Last time: time independent, a.k.a. stationary state perturbation theory, continued $H=H_{0}+H_{1}$, with $H_{0} \sim \epsilon^{0}$ and $H_{1} \sim \epsilon^{1}$, and that we can do an expansion order-byorder in the small parameter, making corrections to the H_{0} case. To first order, $E_{n, 1}=$ $\left\langle E_{n, 0}\right| H_{1}\left|E_{n, 0}\right\rangle$ and

$$
\left\langle E_{m \neq n, 0} \mid E_{n, 1}\right\rangle=\frac{1}{E_{n, 0}-E_{m, 0}}\left\langle E_{m \neq n, 0}\right| H_{1}\left|E_{n, 0}\right\rangle, \quad\left\langle E_{n, 0} \mid E_{n, 1}\right\rangle=0
$$

where the last condition is by a choice of overall phase. So

$$
\left|E_{n, 1}\right\rangle=\sum_{m}^{\prime} \frac{\left|E_{m, 0}\right\rangle\left\langle E_{m, 0}\right| H_{1}\left|E_{n, 0}\right\rangle}{E_{n, 0}-E_{m, 0}}=\frac{P_{n \perp}}{E_{n, 0}-H_{0}} H_{1}\left|E_{n, 0}\right\rangle
$$

where $\sum_{m}{ }^{\prime}$ means all states with $E_{m, 0} \neq E_{n, 0}$ and $P_{n \perp} \equiv 1-\left|E_{n, 0}\right\rangle\left\langle E_{n, 0}\right|$. Note that $\left|E_{n, 1}\right\rangle \equiv\left|n_{1}\right\rangle$ is not an eigenstate of either H_{0} or H_{1}; it is the order ϵ correction to the eigenstate of H. To second order

$$
E_{n, 2}=\left\langle E_{n, 0}\right| H_{1}\left|E_{n, 1}\right\rangle=\sum_{m} \frac{\left.\left|\left\langle E_{m, 0}\right| H_{1}\right| E_{n, 0}\right\rangle\left.\right|^{2}}{E_{n, 0}-E_{m, 0}}
$$

Note that this is always negative for the ground state.

- Show that to the above order we have the expected result

$$
E_{n}=\langle n| H|n\rangle=\left(\left\langle n_{0}\right|+\left\langle n_{1}\right|+\ldots\right)\left(H_{0}+H_{1}\right)\left(\left|n_{0}\right\rangle+\left|n_{1}\right\rangle+\ldots\right)
$$

$\langle n \mid n\rangle=\left\langle n_{0} \mid n_{0}\right\rangle=1$ gives $\left\langle n_{0} \mid n_{2}\right\rangle+\left\langle n_{2} \mid n_{0}\right\rangle+\left\langle n_{1} \mid n_{1}\right\rangle=0$, so $\left\langle n_{2}\right| H_{0}\left|n_{0}\right\rangle+\left\langle n_{0}\right| H_{0}\left|n_{2}\right\rangle+$ $\left\langle n_{1}\right| H_{0}\left|n_{1}\right\rangle=\left\langle n_{1}\right| H_{0}-E_{n, 0}\left|n_{1}\right\rangle=-E_{n, 2}$, so to $\mathcal{O}\left(\epsilon^{2}\right)$ get $2 E_{n, 2}-E_{n, 2}=E_{n, 2}$.

- Example: two-state system with $H=\left(\begin{array}{cc}E_{1,0} & V_{12} \\ V_{12}^{*} & E_{2,0}\end{array}\right)$. We can diagonalize this matrix to find the exact eigenvalues

$$
E_{1,2}=\frac{1}{2}\left(E_{1,0}+E_{2,0}\right) \pm \sqrt{\left(\frac{1}{2}\left(E_{1,0}-E_{2,0}\right)\right)^{2}+\left|V_{12}\right|^{2}}
$$

The perturbative expansion follows by taking $V_{12}=\mathcal{O}(\epsilon)$ and Taylor expanding this expression. Find

$$
E_{1}=E_{1,0}+\frac{\left|V_{12}\right|^{2}}{E_{1,0}-E_{2,0}}+\ldots, \quad E_{2}=E_{2,0}+\frac{\left|V_{12}\right|^{2}}{E_{2,0}-E_{1,0}}
$$

In agreement with our above expressions. The first order correction to E vanishes, and the second order correction is BTW negative for the groundstate. The first order correction to the eigenstates to zeroth and first order are

$$
\left|E_{1}\right\rangle=\binom{1}{0}+\frac{V_{12}^{*}}{E_{1,0}-E_{2,0}}\binom{0}{1}+\ldots, \quad\left|E_{2}\right\rangle=\binom{0}{1}+\frac{V_{12}}{E_{2,0}-E_{1,0}}\binom{1}{0}+\ldots
$$

Can check that it agrees with above.

- Example: SHO with $H_{1}=\frac{1}{2} \epsilon m \omega^{2} x^{2}$, i.e. replace $\omega \rightarrow \sqrt{1+\epsilon} \omega$. The ground state of the perturbed theory, to order ϵ is computed from

$$
V_{00}=\left\langle 0^{(0)}\right| H_{1}\left|0^{(0)}\right\rangle=\epsilon \hbar \omega / 4, \quad V_{2,0}=\left\langle 2^{(0)}\right| H_{1}\left|0^{(0)}\right\rangle=\epsilon \hbar \omega / 2 \sqrt{2} .
$$

Compute $E_{0}^{(1)}=\frac{1}{4} \epsilon \hbar \omega$, and $\left|0^{(1)}\right\rangle=-\epsilon\left|2^{(0)}\right\rangle / 4 \sqrt{2}$ and $E_{0}^{(2)}=-\hbar \omega \epsilon^{2} / 16$, which indeed agrees with expanding $\frac{1}{2} \hbar \omega \sqrt{1+\epsilon}$.

- Stark effect: put an atom in an external electric field, treating $e E_{0}$ as a perturbation. Take $H_{1}=e E_{0} z$ for an electric field along the \widehat{z} axis (the electron charge here is $-e$). Then $E_{n, 1}=e E_{0}\left\langle E_{n, 0}\right| z\left|E_{n, 0}\right\rangle$, which is zero by parity symmetry if the state is non-degenerate (e.g. in the ground state of the hydrogen atom). To second order,

$$
E_{n, 2}=e^{2} E_{0}^{2} \sum_{m} \frac{\mid\left.\left\langle\left\langle E_{m, 0}\right| z \mid E_{n, 0}\right\rangle\right|^{2}}{E_{n, 0}-E_{m, 0}}
$$

It follows from the Wigner-Eckart theorem that $\left\langle n^{\prime}, \ell^{\prime}, m^{\prime}\right| z|n, \ell, m\rangle \propto \delta_{m^{\prime}, m} \delta_{\left(\ell^{\prime}-\ell\right)^{2}, 1}$.. The second order shift can be understood as polarizing the system, and the change in energy is $-\frac{1}{2} \alpha E_{0}^{2}$ (you'll check this in HW examples).

For degenerate states, there is generally an effect already at first order; we need to use degenerate perturbation theory.

- Degenerate perturbation theory: especially interesting case, where H_{1} splits the degenerate spectrum of H_{0}. Suppose the H_{0} eigenstates are $\left|n_{0, k}\right\rangle$, where k runs over the degenerate space of H_{0} eigenvectors with eigenvalue $E_{n, 0}$, say $k=1 \ldots K$. Now H_{1} 's matrix elements on this space of states is a $K \times K$ matrix. If we naively apply the above expressions, we run into problems with the denominator of e.g. $\left\langle E_{m \neq n, 0} \mid E_{n, 1}\right\rangle=$ $\frac{1}{E_{n, 0}-E_{m, 0}}\left\langle E_{m \neq n, 0}\right| H_{1}\left|E_{n, 0}\right\rangle$ in the degenerate subspace. The solution is to diagonalize the H_{1} matrix elements on this space, so we get $0 / 0$ instead of $1 / 0$. Also, diagonalizing H_{1} in the degenerate space is needed for a smooth $\epsilon \rightarrow 0$ limit, since for any $\epsilon \rightarrow 0^{+}$the states are not eigenstates unless they diagonalize H_{1}. The eigenvalues of the H_{1} matrix
are the first order correction $E_{n, 1, k}$ values. The expression for $|n, 1\rangle$ is similar to that in the non-degenerate case, where the \sum_{m}^{\prime} is understood to be over states with $E_{m, 0} \neq E_{n, 0}$, i.e. excluding all of the states with energy $E_{n, 0}$.

If some degeneracy remains at first order, one needs to diagonalize the matrix $V_{n^{\prime}, n}+$ $\sum_{m}{ }^{\prime} V_{n m} V_{m n^{\prime}} /\left(E_{n, 0}-E_{m, 0}\right)$ where we take $H_{1} \rightarrow V$ to reduce index clutter.

