
Physics 212b, Ken Intriligator lecture 12, Feb 26, 2018

• Last times: time independent, a.k.a. stationary state perturbation theory, continued

H = H0+H1, with H0 ∼ ǫ0 and H1 ∼ ǫ1, and that we can do an expansion order-by-order

in the small parameter, making corrections to the H0 case. Recall En,1 = 〈En,0|H1|En,0〉
and

〈Em 6=n,0|En,1〉 =
1

En,0 −Em,0
〈Em 6=n,0|H1|En,0〉, 〈En,0|En,1〉 = 0,

where the last condition is by a choice of overall phase. So

|En,1〉 =
∑

m

′ |Em,0〉〈Em,0|H1|En,0〉
En,0 −Em,0

=
Pn⊥

En,0 −H0
H1|En,0〉

where
∑

m

′

means all states with Em,0 6= En,0 and Pn⊥ ≡ 1 − |En,0〉〈En,0|. Note that

|En,1〉 ≡ |n1〉 is not an eigenstate of either H0 or H1; it is the order ǫ correction to the

eigenstate of H. To second order

En,2 = 〈En,0|H1|En,1〉 =
∑

m

′ |〈Em,0|H1|En,0〉|2
En,0 −Em,0

.

Note that this is always negative for the ground state. To the above order we have the

expected result

En = 〈n|H|n〉 = (〈n0|+ 〈n1|+ . . .)(H0 +H1)(|n0〉+ |n1〉+ . . .).

〈n|n〉 = 〈n0|n0〉 = 1 gives 〈n0|n2〉 + 〈n2|n0〉 + 〈n1|n1〉 = 0, so 〈n2|H0|n0〉 + 〈n0|H0|n2〉 +
〈n1|H0|n1〉 = 〈n1|H0 −En,0|n1〉 = −En,2, so to O(ǫ2) get 2En,2 − En,2 = En,2.

• Wave function renormalization: |n〉 = |n0〉 + |n1〉 + . . . has 〈n|n〉 ≡ Z−1
n = 1 +

〈n1|n1〉+ . . ., gives

Zn = 1−
∑

m′

|〈m0|H1|n0〉|2
(En,0 −Em,0)2

+ . . . .

The renormalized state is |n̂〉 = Z1/2|n〉. Note that Zn = |〈n0|n̂〉|2 is the probability of

finding the H eigenstate |n̄〉 in the unperturbed H0 eigenstate |n0〉; so clearly Zn < 1, as

is clear also from the above. A general identity is

Zn =
∂

∂En,0
(En,0 + 〈n0|H1|n0〉+

∑

m′

|〈m0|H1|n0〉|2
En,0 − Em,0

+ . . .) =
∂En

∂En,0
.

The fact that Zn < 1 for the ground state fits then with the fact that the second order

perturbation is negative.
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• Stark effect: put an atom in an external electric field, treating eE0 as a perturbation.

Take H1 = eE0z for an electric field along the ẑ axis (the electron charge here is −e). Then

En,1 = eE0〈En,0|z|En,0〉, which is zero by parity symmetry if the state is non-degenerate

(e.g. in the ground state of the hydrogen atom). To second order,

En,2 = e2E2
0

∑

m

′ |〈Em,0|z|En,0〉|2
En,0 −Em,0

.

It follows from the Wigner-Eckart theorem that 〈n′, ℓ′, m′|z|n, ℓ,m〉 ∝ δm′,mδ(ℓ′−ℓ)2,1.. The

second order shift can be understood as polarizing the system, and the change in energy

is −1
2αE

2
0 (you’ll check this in HW examples).

For degenerate states, there is generally an effect already at first order; we need to

use degenerate perturbation theory.

• Degenerate perturbation theory: especially interesting case, where H1 splits the

degenerate spectrum of H0. Suppose the H0 eigenstates are |n0,k〉, where k runs over

the degenerate space of H0 eigenvectors with eigenvalue En,0, say k = 1 . . .K. Now

H1’s matrix elements on this space of states is a K ×K matrix. If we naively apply the

above expressions, we run into problems with the denominator of e.g. 〈Em 6=n,0|En,1〉 =
1

En,0−Em,0

〈Em 6=n,0|H1|En,0〉 in the degenerate subspace. The solution is to diagonalize the

H1 matrix elements on this space, so we get 0/0 instead of 1/0. Also, diagonalizing H1

in the degenerate space is needed for a smooth ǫ → 0 limit, since for any ǫ → 0+ the

states are not eigenstates unless they diagonalize H1. The eigenvalues of the H1 matrix

are the first order correction En,1,k values. The expression for |n, 1〉 is similar to that in

the non-degenerate case, where the
∑′

m is understood to be over states with Em,0 6= En,0,

i.e. excluding all of the states with energy En,0.

If some degeneracy remains at first order, one needs to diagonalize the matrix Vn′,n+∑
m

′

VnmVmn′/(En,0 − Em,0) where we take H1 → V to reduce index clutter.

• Stark effect for n = 2 states continued, if the state is e.g. initially in the |2S0〉
state, to first order in the small ~E perturbation the energy is −(e2/2a0)(

1
4 ± 6E0/(e/a

2))

with equal probability for the two cases. Note that e2/a0 = 5.15 × 109V/cm so the E0

just has to be small compared with that huge value for perturbation theory to be a good

approximation.

Stark effect for n = 2 states. H1 is a 4 × 4 matrix, with non-zero element ∆ =

〈200|eEz|210〉 = −3eEa0 and its transpose (Hermitian conjugate). This is diagonalized

by (|200〉 ± |210〉)/
√
2, with eigenvalue ±∆, along with |21 ± 1〉 with eigenvalue 0. The

split energy eigenstates are not parity eigenstates.

2


