Physics 212b, Ken Intriligator lecture 12, Feb 26, 2018

- Last times: time independent, a.k.a. stationary state perturbation theory, continued $H=H_{0}+H_{1}$, with $H_{0} \sim \epsilon^{0}$ and $H_{1} \sim \epsilon^{1}$, and that we can do an expansion order-by-order in the small parameter, making corrections to the H_{0} case. Recall $E_{n, 1}=\left\langle E_{n, 0}\right| H_{1}\left|E_{n, 0}\right\rangle$ and

$$
\left\langle E_{m \neq n, 0} \mid E_{n, 1}\right\rangle=\frac{1}{E_{n, 0}-E_{m, 0}}\left\langle E_{m \neq n, 0}\right| H_{1}\left|E_{n, 0}\right\rangle, \quad\left\langle E_{n, 0} \mid E_{n, 1}\right\rangle=0
$$

where the last condition is by a choice of overall phase. So

$$
\left|E_{n, 1}\right\rangle=\sum_{m}{ }^{\prime} \frac{\left|E_{m, 0}\right\rangle\left\langle E_{m, 0}\right| H_{1}\left|E_{n, 0}\right\rangle}{E_{n, 0}-E_{m, 0}}=\frac{P_{n \perp}}{E_{n, 0}-H_{0}} H_{1}\left|E_{n, 0}\right\rangle
$$

where $\sum_{m}{ }^{\prime}$ means all states with $E_{m, 0} \neq E_{n, 0}$ and $P_{n \perp} \equiv 1-\left|E_{n, 0}\right\rangle\left\langle E_{n, 0}\right|$. Note that $\left|E_{n, 1}\right\rangle \equiv\left|n_{1}\right\rangle$ is not an eigenstate of either H_{0} or H_{1}; it is the order ϵ correction to the eigenstate of H. To second order

$$
E_{n, 2}=\left\langle E_{n, 0}\right| H_{1}\left|E_{n, 1}\right\rangle=\sum_{m} \frac{\left.\left|\left\langle E_{m, 0}\right| H_{1}\right| E_{n, 0}\right\rangle\left.\right|^{2}}{E_{n, 0}-E_{m, 0}}
$$

Note that this is always negative for the ground state. To the above order we have the expected result

$$
E_{n}=\langle n| H|n\rangle=\left(\left\langle n_{0}\right|+\left\langle n_{1}\right|+\ldots\right)\left(H_{0}+H_{1}\right)\left(\left|n_{0}\right\rangle+\left|n_{1}\right\rangle+\ldots\right)
$$

$\langle n \mid n\rangle=\left\langle n_{0} \mid n_{0}\right\rangle=1$ gives $\left\langle n_{0} \mid n_{2}\right\rangle+\left\langle n_{2} \mid n_{0}\right\rangle+\left\langle n_{1} \mid n_{1}\right\rangle=0$, so $\left\langle n_{2}\right| H_{0}\left|n_{0}\right\rangle+\left\langle n_{0}\right| H_{0}\left|n_{2}\right\rangle+$ $\left\langle n_{1}\right| H_{0}\left|n_{1}\right\rangle=\left\langle n_{1}\right| H_{0}-E_{n, 0}\left|n_{1}\right\rangle=-E_{n, 2}$, so to $\mathcal{O}\left(\epsilon^{2}\right)$ get $2 E_{n, 2}-E_{n, 2}=E_{n, 2}$.

- Wave function renormalization: $|n\rangle=\left|n_{0}\right\rangle+\left|n_{1}\right\rangle+\ldots$ has $\langle n \mid n\rangle \equiv Z_{n}^{-1}=1+$ $\left\langle n_{1} \mid n_{1}\right\rangle+\ldots$, gives

$$
Z_{n}=1-\sum_{m^{\prime}} \frac{\left.\left|\left\langle m_{0}\right| H_{1}\right| n_{0}\right\rangle\left.\right|^{2}}{\left(E_{n, 0}-E_{m, 0}\right)^{2}}+\ldots
$$

The renormalized state is $|\hat{n}\rangle=Z^{1 / 2}|n\rangle$. Note that $Z_{n}=\left|\left\langle n_{0} \mid \hat{n}\right\rangle\right|^{2}$ is the probability of finding the H eigenstate $|\bar{n}\rangle$ in the unperturbed H_{0} eigenstate $\left|n_{0}\right\rangle$; so clearly $Z_{n}<1$, as is clear also from the above. A general identity is

$$
Z_{n}=\frac{\partial}{\partial E_{n, 0}}\left(E_{n, 0}+\left\langle n_{0}\right| H_{1}\left|n_{0}\right\rangle+\sum_{m^{\prime}} \frac{\left.\left|\left\langle m_{0}\right| H_{1}\right| n_{0}\right\rangle\left.\right|^{2}}{E_{n, 0}-E_{m, 0}}+\ldots\right)=\frac{\partial E_{n}}{\partial E_{n, 0}}
$$

The fact that $Z_{n}<1$ for the ground state fits then with the fact that the second order perturbation is negative.

- Stark effect: put an atom in an external electric field, treating $e E_{0}$ as a perturbation. Take $H_{1}=e E_{0} z$ for an electric field along the \widehat{z} axis (the electron charge here is $-e$). Then $E_{n, 1}=e E_{0}\left\langle E_{n, 0}\right| z\left|E_{n, 0}\right\rangle$, which is zero by parity symmetry if the state is non-degenerate (e.g. in the ground state of the hydrogen atom). To second order,

$$
E_{n, 2}=e^{2} E_{0}^{2} \sum_{m}^{\prime} \frac{\left.\left|\left\langle E_{m, 0}\right| z\right| E_{n, 0}\right\rangle\left.\right|^{2}}{E_{n, 0}-E_{m, 0}}
$$

It follows from the Wigner-Eckart theorem that $\left\langle n^{\prime}, \ell^{\prime}, m^{\prime}\right| z|n, \ell, m\rangle \propto \delta_{m^{\prime}, m} \delta_{\left(\ell^{\prime}-\ell\right)^{2}, 1} .$. The second order shift can be understood as polarizing the system, and the change in energy is $-\frac{1}{2} \alpha E_{0}^{2}$ (you'll check this in HW examples).

For degenerate states, there is generally an effect already at first order; we need to use degenerate perturbation theory.

- Degenerate perturbation theory: especially interesting case, where H_{1} splits the degenerate spectrum of H_{0}. Suppose the H_{0} eigenstates are $\left|n_{0, k}\right\rangle$, where k runs over the degenerate space of H_{0} eigenvectors with eigenvalue $E_{n, 0}$, say $k=1 \ldots K$. Now H_{1} 's matrix elements on this space of states is a $K \times K$ matrix. If we naively apply the above expressions, we run into problems with the denominator of e.g. $\left\langle E_{m \neq n, 0} \mid E_{n, 1}\right\rangle=$ $\frac{1}{E_{n, 0}-E_{m, 0}}\left\langle E_{m \neq n, 0}\right| H_{1}\left|E_{n, 0}\right\rangle$ in the degenerate subspace. The solution is to diagonalize the H_{1} matrix elements on this space, so we get $0 / 0$ instead of $1 / 0$. Also, diagonalizing H_{1} in the degenerate space is needed for a smooth $\epsilon \rightarrow 0$ limit, since for any $\epsilon \rightarrow 0^{+}$the states are not eigenstates unless they diagonalize H_{1}. The eigenvalues of the H_{1} matrix are the first order correction $E_{n, 1, k}$ values. The expression for $|n, 1\rangle$ is similar to that in the non-degenerate case, where the \sum_{m}^{\prime} is understood to be over states with $E_{m, 0} \neq E_{n, 0}$, i.e. excluding all of the states with energy $E_{n, 0}$.

If some degeneracy remains at first order, one needs to diagonalize the matrix $V_{n^{\prime}, n}+$ $\sum_{m}{ }^{\prime} V_{n m} V_{m n^{\prime}} /\left(E_{n, 0}-E_{m, 0}\right)$ where we take $H_{1} \rightarrow V$ to reduce index clutter.

- Stark effect for $n=2$ states continued, if the state is e.g. initially in the $\left|2 S_{0}\right\rangle$ state, to first order in the small \vec{E} perturbation the energy is $-\left(e^{2} / 2 a_{0}\right)\left(\frac{1}{4} \pm 6 E_{0} /\left(e / a^{2}\right)\right)$ with equal probability for the two cases. Note that $e^{2} / a_{0}=5.15 \times 10^{9} \mathrm{~V} / \mathrm{cm}$ so the E_{0} just has to be small compared with that huge value for perturbation theory to be a good approximation.

Stark effect for $n=2$ states. H_{1} is a 4×4 matrix, with non-zero element $\Delta=$ $\langle 200| e E z|210\rangle=-3 e E a_{0}$ and its transpose (Hermitian conjugate). This is diagonalized by $(|200\rangle \pm|210\rangle) / \sqrt{2}$, with eigenvalue $\pm \Delta$, along with $|21 \pm 1\rangle$ with eigenvalue 0 . The split energy eigenstates are not parity eigenstates.

