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Hyperfine structure and the 21 centimeter line of H: there is a magnetic dipole-dipole

interaction between the proton and electron spins.
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where 〈~σe · ~σp〉 = 1 for the triplet and −3 for the singlet. The energy difference between

the two states is that of a photon with wavelength λ ≈ 21.106cm. The excited state is

extremely long lived (around 10 million years), hence a clean line, and it has been used

since the 1950s to understand and map out hydrogen in the Universe (and the Doppler

redshift of expansion).

Aside: Lamb shift of the hydrogen energy levels in QFT from interaction of the electron

with the vacuum fluctuations of QFT. Superficially infinite. Once properly understood, it

explains the shift between the 2S 1
2
and 2P 1

2
levels observed by Lamb and Retherford. Hans

Bethe gave a rough estimate (based on non-relativistic QM) on the back of an envelope on

a train ride. It was first properly computed in quantum electrodyamics by Normal Kroll

in 1949. In 1962, Kroll was recruited to be one of the founding members of the UCSD

physics department, and he was an active member of the department for 40 years.

• General atoms: H0 =
∑Z

i=1H0,i with H0,i = p2i /2m + Vc(ri) where Vc(ri) is an

averaged potential. V1 =
∑
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). Consider example of carbon

atom, i.e. Z = 6 electrons. Fill energy levels as 1s22s22p2. Accounting for the antisymme-

try of ψ, there are

(

2× 3
2
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= 15 states, which are 2S+1L = 3P (9 states), 1S (1 state),

and 1D (5 states). These states are degenerate with H0, and are split by V1 according to

Hund’s rule: the repulsive electron-electron interaction is largest for smallest total spin (a

more symmetric orbital part means the electrons have more overlap with each other) and

angular momentum, so the 1S state has the highest energy, then the 1D. The 3P states

have the lowest energy. The spin-orbit coupling splits the degeneracy of the 3P states, with
3PJ=0 having the lowest energy, then 3PJ=1, and finally 3PJ=2 has the highest energy.
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• Suppose a hydrogen atom is a distance R away from a charge configuration whose

first non-zero multipole moment is at ℓ′′′ = 3, of strength X . Which energy levels are split

at leading order? Answer: the perturbation is a spherical tensor with angular momentum

3, so rotational symmetry implies that a necessary condition for a non-zero matrix element

with states of angular momentum ℓ and ℓ′ is that ℓ′ is in the tensor product of ℓ and 3.

For n = 1, 2, this cannot happen. For n = 3, rotational symmetry allows ℓ = 1 and ℓ′ = 2

to combine into a state with ℓ′′ = 3, which is also consistent with parity.

• Example: Van Der Waals interaction. Consider two hydrogen atoms, with ~r1 the

vector from one proton to its electron, and ~r2 the vector from the other proton to its

electron, and ~R the vector from one proton to the other. The perturbation is
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Take ~R = Rẑ and then H1 ≈ e2(x1x2 + y1y2 − 2z1z2)/R
3. This is a spherical tensor with

ℓ′′′ = 2, so it can have non-zero matrix elements in e.g. two states with ℓ = 1, i.e. starting

at the first excited state. The first order contribution to the energy in this case leads to an

energy ∼ 1/R3. For atoms in the groundstate there is an effect starting at second order,

which leads to a potential Veff (R) ∼ 1/R6 with negative coefficient. This is the attractive

Van Der Walls interaction which e.g. explains why hydrogen atoms pair up into hydrogen

molecules. Each atom polarizes the other, leading to the attractive interaction with the

dipole moment operator of the second atom. Note that this is not the classical strength

of an induced dipiole moment ∼ 1/R3, with another ∼ 1/R3, which would have another

factor of 1/R3 for the interaction, leading to 1/R9 vs the 1/R6 here and observed. At

short distances, need to take into account the antisymmetry of the total wavefunction and

hence the exclusion principle.
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