
Physics 212b, Ken Intriligator lecture 14, Mar 5, 2018

• Recall the original way we obtained the perturbation theory expressions: (H0 +

H1)|En〉 = En|En〉 and we expand En =
∑

L=0E
(L)
n and |En〉 =

∑

L |E(L)
n 〉, where the

superscript is the power of ǫ ∼ H1/H0. Project on 〈E(0)
n | and take 〈E(0)

n |En〉 = 1 and

〈En|En〉 ≡ Z−1
n , as in the last lecture. So get the exact relation (all orders in ǫ)

En = E(0)
n + 〈E(0)

n |H1|En〉, i.e. EL>0
n = 〈E(0)

n |H1|E(L−1)
n 〉.

Likewise, project (H0 +H1)|En〉 = En|En〉 on 〈m(0)| to get

|En〉 = |E(0)
n 〉+

∑

m

′|E(0)
m 〉 1

En − E
(0)
m

〈E(0)
m |H1|En〉.

Note that this is a slightly different packaging of the perturbative expansion as compared

with before: it is the full, all orders En in the denominator, and in |En〉. This is the starting
point of Brillouin-Wigner perturbation theory (discussed in e.g. Baym). It can be unpacked

a bit by iterating the expression for |En〉 in terms of its perturbative expansion on the RHS.

The results are non-linear equations for En, and expanding around known approximate

solutions, not necessarily E
(0)
n can lead to improved convergence vs the standard (Raleigh

Schrodinger) perturbative expansion.

• Variational method: show that the functional

E[|ψ〉] ≡ 〈ψ|H|ψ〉
〈ψ|ψ〉 ≥ E0,

with equality iff |ψ〉 is the groundstate. Can use this to bound and estimate the groundstate

energy by guessing and scanning over various trial states. And the lowest value of the LHS

is the state closest to the actual groundstate.

Also for excited states, it is a theorem that the functional E[|ψ〉] on the Hilbert space

is stationary for precisely the discrete energy eigenstates, and the stationary values are

the discrete energy eigenvalues. Proof: vary δE from the definition, and show that the

condition δE = 0 requires 〈δψ|(H − E)|ψ〉 = 0.

Example: estimate the groundstate energy of the 1d particle in a box, |x| ≤ a by

trial functions that satisfy ψ(−x) = ψ(x) and ψ(a) = 0. E.g. ψ = |a|λ − |x|λ and

then find Etrial(λ) = (λ + 1)(2λ + 1)(2λ − 1)−1(h̄2/4m2a2) and minimize in λ to get

Etrial = (5 + 2
√
6)π−2E0 = 1.00298E0.
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• Example: Coulomb potential: H = ~p2/2m−Ze2/r. We know the answer, but use it

to illustrate the variational method. Try ψ(r) = Ce−λr (this is the right choice; one could

also try wrong things like ψtrial(r) = e−λr2 and get pretty good results). Find

Etrial(λ) =

∫

∞

0

drr2e−λr

(

− h̄2

2mr2
d

dr
(r2

d

dr
e−λr)− Ze2

r
e−λr

)

/

∫

∞

0

drr2e−2λr.

Verify that minimizing w.r.t. λ gives the correct groundstate wavefunction and energy.

• Groundstate of Helium. First try treating electron-electron term as a perturbation.

The 0th order result is then that of two essentially decoupled Coulomb potential systems,

where we must impose Fermi statistics So put the two electron spins in the singlet, and

the orbital part is ψ1,0,0(~x1)ψ1,0,0(~x2) = (Z3/πa30)e
−Z(r1+r2)/a0 , where Z = 2 for He, and

E
(0)
0 = 2×Z2×(−e2/2a0). The first order correction is 〈(e2/r12)〉. This is computed by ex-

panding 1/r12 =
∑

∞

ℓ=0
rℓ<
rℓ+1

>

Pℓ(cos γ) and Pℓ(cos γ) =
4

2ℓ+1

∑ℓ
m=−ℓ Y

∗

ℓ,m(θ1, φ1)Yℓ,m(θ2, φ2).

The final result is E
(1)
0 = (5/2)(e2/2a0)(Z/2). This gives E

(0)
0 +E

(1)
0 ≈ (−8+ 5

2
)(e2/2a0) ≈

−74.8eV vs Eexp = −78.8eV . Pretty good! Can do even better by treating Zeff as

a parameter (corresponding to the protons being screened by the electron cloud) and

mimimizing in Zeff . 〈~x1~x2|0̃〉 = (Z3
eff/πa

3
0)e

−Zeff (r1+r2)/a0 leads to Etrial = 〈0̃|H|0̃〉 =

(Z2
eff − 2ZZeff +

5
8Zeff )(e

2/a0). Minimization gives Zeff = 2− (5/16) ≈ 1.69 < 2. Then

Etrial = −77.5.

Consider an excited state where one of the electrons is in the 1s groundstate

and the other is in an nℓ excited state. If the spins are in the antisymmetric sin-

glet state, we symmetrize in the spatial wavefunction, and if in the spin triplet state

we antisymmetrize. Find for the first order perturbation 〈e2/r12〉 = I ± J , where

I =
∫

d3~x1
∫

d3~x2|ψ100(~x1)|2|ψnℓm(~x2)|2e2/r12 is the direct term and J is the exchange

integral. It turns out that J > 0 so the spin singlet has higher energy than the triplet.

The singlet states were named parahelium and the triplet were named orthohelium.
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