
Physics 212b, Ken Intriligator lecture 17, Mar 14, 2018

• Last time: write the SE: ih̄∂t|ψ(t)〉 = (H0 +H1(t))|ψ(t)〉 and expand in the basis of

eigenstates of H0: |ψ(t)〉 =
∑

n an(t)e
−iE(0)

n t|n0〉, and then the SE gives 0 =
∑

n(ih̄ȧ(t) −
H1(t)an(t))e

−iE0
nt/h̄|n0〉 and then get ih̄ȧf =

∑
n〈f0|H1(t)|n0〉eiωfntan(t), where ωfn =

(E0
f − E0

n)/h̄. Now expand in perturbative series. If at time t = 0 the system is in state

|i0〉 then the first order result is

af (t) = δfi −
i

h̄

∫ t

0

〈f0|H1(t
′)|i0〉eiωfit

′

dt′ +O(H2
1 ).

• Recall from last time the interaction picture: |ψI(t)〉 = eiH0t/h̄|ψS(t)〉, with time evo-

lution |ψI(t)〉 = UI(t, t0)|ψI(t0)〉 and ih̄ d
dt
UI = HI(t)UI . This leads to the integral equa-

tion UI(t, t0) = 1 − i
h̄

∫ t

t0
H1(t

′)UI(t
′, t0)dt

′. Integrate to UI = T exp(−(i/h̄)
∫
dt′HI(t

′)).

Can expand, or iterate the integral equation, to get the Dyson series.

• For a sudden perturbation, over time ∆t → 0, integrating the SE gives ∆|ψ〉 =
i
h̄∆tH(t)|ψ → 0, so the state is unchanged. E.g. a particle in a box whose size suddenly

grows from L to L′, if it was originally in the groundstate, compute the probability to find

it in the new groundstate.

The opposite limit is an adiabatic perturbation, where if the rate of change is slow

enough the system will go from an eigenstate |n(0)〉 ofH(0) to the corresponding eigenstate

|n(τ)〉 of H(τ). E.g. particle in a box where the walls slowly expand. E.g. also H1(t) =

H1(0)e
−t2/τ2

, from t = −∞ to t = ∞. Can verify that for ωτ ≫ 1 the system in an

eigenstate at t = −∞ will be in the same eigenstate for t = +∞.

Expand ψ =
∑

n an(t)un(t) exp((ih̄)
−1

∫ t

0
En(t

′)dt′) where H(t)un(t) = En(t)un(t).

Can show (see e.g. Schiff) that ȧk 6=n ≈ (h̄ωkn)
−1〈k|Ḣ|n〉eiωknt, which does not grow with

time.

• Case H1(t) = H1Θ(t), get a
(1)
n = −i

h̄ Vni
∫ t

0
eiωnit

′

dt′ = Vni(1− eiωnit)/(En − Ei) so

|a(1)n |2 = (4|Vni|2/(En − Ei)
2) sin2((En − Ei)t/2h̄), where all En,i are the H0 eigenvalues

(I’m dropping the 0 subscript or superscript reminder of that). Recall what sinc2(x) ≡
sin2 x/x2 looks like: peak is 1 (at x = 0) and it integrates to π, with central peak for

|x| ≤ π. So the transition probability has peak proportional to t2 and width proportional

to 1/t. For large t, it is appreciable only in the central peak, i.e. |En − Ei|t ≤ 2πh̄,

which is roughly like a ∆E∆t analog of the ∆x∆p ≥ h̄/2 uncertainty relation (except

the interpretation is different (t is a parameter vs x as an operator) and the inequality is

opposite).
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• When there is a continuum of possible final states, we replace
∑

n →
∫
dEnρ(En).

E.g. for a particle in a box of volume V with periodic boundary conditions we have
∑

~n →
∫
(V/(2π)3)d3~p and d3~p = p2dpdΩp and then do a change of variables to E = p2/2m,

gives ρ(E) = (mV/(2πh̄)3)EdΩp.

• The golden rule: for t→ ∞, (En−Ei)
−2 sin2((En−Ei)t/2h̄) → (πt/2h̄)δ(En−Ei).

So
∫
n
Pn0→n(t) =

∫
dEnρ(En)Pn0→n(t) → Γi→nt with

Γi→n =
2π

h̄

(
ρ(En)|〈n|H1|i〉|2

)
|En→Ei

.

Fermi called it the golden rule number 2; it was first obtained by Dirac.

We can similarly get the golden rule if the perturbation acts from −T/2 to +T/2,

taking T → ∞: get af = −h̄−12πiVfiδ(ωfi−ω). To compute the probability need to square

the delta function: δ2 = limT→∞ δ(ωfi − ω)
∫ T/2

−T/2
ei(ωfi−ω)tdt/2π → δ(ωfi − ω)T/2π. We

need to divide by 2π and compute a rate to get a sensible answer.

Working to 2nd order, the result differs by replacing |Vni|2 → |Vni +
∑

m 6=i
VnmVmi

Ei−Em
|2.

This can be pictured in terms of the perturbation taking |i〉 to an intermediate virtual

state |m〉.
• Consider harmonic H1(t), taking H1(t) = H1e

−iωt + h.c.. Then get to first order

a1f (t) = h̄−1( 1−ei(ω+ωni)t

ω+ωni
Vni +

1−ei(ωni−ω)t

−ω+ωni
V †
ni). Compared with the previous case, we need

to replace ωni → ωni ±ω. For t→ ∞ the amplitude is appreciable only for En ≈ Ei ± h̄ω,

i.e. the perturbation can lead to absorption or emission of energy h̄ω. For t→ ∞, if there is

a continuum of energies, the golden rule becomes Γi→n = 2π
h̄

(
ρ(En)|〈n|H1|i〉|2

)
|En=Ei±h̄ω.

• Example of interaction with a classical radiation field: take H1 = eφ − e
mc

~A · ~p
in Coulomb gauge ∇ · ~A and ~A = 2A0ǫ̂ cos(~k · ~x − ωt), so harmonic with V †

ni =

−(eA0/mc)(e
i~k·~xǫ̂ · ~p)ni. The absorption cross section is then (energy)(rate)/(energy flux),

where the energy is h̄ω and the flux is (c/2)(E2 +B2)/8π = ω2|A0|2/2πc. Get

dσabs ≈ 4π2h̄m2ω
e2

h̄c
|〈n|ei~k·~xǫ̂ · ~p|i〉|2ρ(En)|En=Ei+h̄ω.

In the dipole approximation, we replace ei
~k·~x ≈ 1 (good approximation for h̄ω ∼

Ze2/Ratom: higher terms suppressed by powers of Z/137). Also, use ~p = m[~x,H0]/ih̄

to replace (ǫ̂ · ~p)ni → imωniǫ · (~x)ni.
• Einstein (today, in addition to being the day that Hawking died, and Pi day, is

Einstein’s birthday!) A and B coefficients (1917): the probability for spontaneous emission

B and the probability of stimulated emission A must have ratio B/A = ρ(ω) in order
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for equilibrium to be possible. Recall that the thermal average number of photons of

frequency ω is n(ω) =
∑∞

n=0 ne
−nh̄ω/kBT /

∑
n e

−nh̄ω/kBT = (eh̄ω/kBT −1)−1 Bose-Einstein

distribution. Suppose that the walls of the cavity are made of atoms with two energy

levels, of energy E1 and E2 > E1, then P2/P1 = e−(E2−E1)/kBT is the thermal probability

ratio of the states. Spontaneous absorption and emission gives ṅ1 = −Bn1P1 and ṅ2 =

Bn2P2. If these were the only effects, all photons would be absorbed because P2 <

P1. There must be an additional, stimulated emission process to obtain balance. The

stimulated emission rate, due to the perturbation, is ṅ1 = A21n2ρ(ω) for emission and

ṅ1 = −A12n1ρ(ω) for absorption. Balancing gives 0 = B21n2 + A21n2ρ(ω) − A12n1ρ(ω).

Using ni = wie
−Ei/kT /Z the balancing requires A21/A12 = w1/w2 (state multiplicity

ratio), and B21/A21 = 2h̄ω3/πc3. The emission and absorption process could be studied

using time-dependent perturbation theory with a harmonic perturbation of frequency ω,

in the dipole approximation. The spontaneous and stimulate emission is related to the

fact that photons should be written in terms of creation and annihilation operators a†~p

and a~p which are similar to those of the SHO for each frequency mode. Then a†ω|nω〉 =
√
nω + 1|nω + 1〉. The 1 term gives the spontaneous piece and the n(ω) term gives the

stimulated piece. We ran out of time and could not discuss it here. See e.g. Baym for

more details.
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