Physics 212b, Ken Intriligator lecture 2, Jan 10, 2018

- Lightening review of WKB (Wentzel, Kramers, Brillouin) (will cover it in more detail if it was not already seen last quarter). For high momentum, $\psi_{E}(x)$'s wiggles are smaller than $V(x)$'s wiggles, so can approximate solutions via $V(x) \approx$ constant and then add successive corrections. Write the time-indep SE in terms of $k(x)=\sqrt{2 m(E-V(x)) / \hbar^{2}}$ or $k(x) \equiv-i \sqrt{2 m(V(x)-E) / \hbar^{2}}$ in $E<V$ and $E>V$ regions respectively, so

$$
\psi_{E}^{\prime \prime}+k(x)^{2} \psi_{E}(x)=0
$$

Take $\psi_{E}(x) \equiv e^{i W(x) / \hbar}$ to get $\frac{2}{3}|z|^{3 / 2}=\hbar^{-1} \int^{x} d x^{\prime} \sqrt{2 m\left(E-V\left(x^{\prime}\right)\right.}$.

$$
i \hbar W^{\prime \prime}-\left(W^{\prime}\right)^{2}+\hbar^{2} k^{2}=0
$$

So for $\hbar\left|W^{\prime \prime}\right|^{2} \ll\left|W^{\prime}\right|^{2}$ we end up with $W_{0}^{\prime}(x)= \pm \hbar k(x)$. Define $W(x)=\sum_{n=0}^{\infty} \hbar^{n} W_{n}(x)$ and plug back in to get an iterative equation for W_{n+1} in terms of W_{n}. In particular, $W_{0}^{\prime}+W_{1}^{\prime}= \pm \sqrt{\hbar^{2} k(x)^{2}+i \hbar W_{0}^{\prime \prime}}$ where expanding the square-root and integrating gives

$$
\psi_{E} \approx e^{\left.i\left(W_{0}+\hbar W_{1}\right) / \hbar\right)} \approx|k(x)|^{-1 / 2} \exp \left[\pm i \int^{x} d x^{\prime} k\left(x^{\prime}\right)\right]
$$

Note that $\left|\psi_{E}\right|^{2} \approx|k(x)|^{-1} \sim 1 / v(x)$, which agrees with what one might call the classical likelihood of finding a particle with velocity v in some region $d x$, since $d x / v=d t$ is the time that it spends in that region.

- We have to patch together these solutions across the values of x where $E=V$; in those vicinities can approximate in terms of the linear potential, with the Airy function. Suppose that there are classical turning points at $x=x_{1}$ and $x=x_{2}$, so the classical motion is for $x_{1} \leq x \leq x_{2}$, which is called region II. Regions I and III are the classically forbidden regions $x<x_{1}$ and $x>x_{2}$. Match the WKB solution in region II to the asymptotic behavior of the Airy function at the turning point, where V is approximately linear: $A i(z) \rightarrow z^{-1 / 4}(2 \sqrt{\pi})^{-1} e^{-2 z^{3 / 2} / 3}$ for $z \rightarrow \infty$ and $A i(z) \rightarrow|z|^{-1 / 4} \pi^{-1 / 2} \cos \left(2 / 3|z|^{3 / 2}-\pi / 4\right)$ for $z \rightarrow-\infty$. Match the $z \rightarrow \infty$ behavior to $\psi_{I, I I I}$ to get

$$
\begin{gathered}
\psi_{E, I \rightarrow I I} \rightarrow 2(E-V(x))^{-1 / 4} \cos \left(\hbar^{-1} \int_{x_{1}}^{x} d x^{\prime} \sqrt{2 m\left(E-V\left(x^{\prime}\right)\right)}-\pi / 4\right) \\
\psi_{E, I I I \rightarrow I I} \rightarrow 2(E-V(x))^{-1 / 4} \cos \left(-\hbar^{-1} \int_{x}^{x_{2}} d x^{\prime} \sqrt{2 m\left(E-V\left(x^{\prime}\right)\right)}+\pi / 4\right),
\end{gathered}
$$

and the two must agree. So the argument of the cos must differ by $n \pi$. The upshot is that, if x_{1} and x_{2} are two classical turning points, these approximations lead to $\int_{x_{1}}^{x_{2}} d x \sqrt{2 m[E-V(x)]}=\left(n+\frac{1}{2}\right) \pi \hbar$, like the Born Sommerfield Wilson quantization $\oint p d q=2 \pi n \hbar$. Note that for e.g. the SHO the classical solution is $x=A \cos (\omega t+\phi)$, $p=m \dot{x}=-m \omega A \sin (\omega t+\phi), \oint p d q=\int_{0}^{2 \pi / \omega} A^{2} m \omega^{2} \sin ^{2}(\omega t+\phi) d t=\pi m \omega A^{2}=2 \pi E / \omega$, so the WKB quantization rule gives $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$, so in this case it gives the exact result. More generally, it gives a good approximation for E_{n} when $n \gg 1$.

- Also, tunneling through a barrier: probability $\sim e^{-2 \int_{x_{1}}^{x_{2}} \sqrt{2 m\left(V_{e f f}(x)-E\right)} d x / \hbar}$, where x here could also denote the radial direction of a 3 d system.
- Now connect to the path integral, using

$$
\psi(x, t)=\int d x^{\prime} K\left(x, t ; x^{\prime}, t^{\prime}\right) \psi\left(x^{\prime}, t^{\prime}\right)
$$

and the saddle point approximation of the path integral gives
$K\left(x, t ; x^{\prime}, t^{\prime}\right) \approx A e^{i S_{c l} / \hbar}=A e^{-i E\left(t-t^{\prime}\right) / \hbar} \exp \left(\frac{i}{\hbar} \int_{t^{\prime}}^{t} d t 2 T\right)=A e^{-i E\left(t-t^{\prime}\right) / \hbar} \exp \left(\frac{i}{\hbar} \int_{x^{\prime}}^{x} p(x) d x\right)$.
where we used $L=T-V=2 T-E$, and we can take E out of the integral since it is conserved. The $|p|^{-1 / 2}$ prefactor in the WKB wavefunction comes from doing the Gaussian integral for quadratic functions in the Tayler expansion of S around the saddle point extremum, i.e. around the classical path. So we find that the approximate K is consistent with $\psi_{E} \approx e^{\frac{i}{\hbar} \int^{x} p d x}$: the x^{\prime} dependence cancels (the $\int d x^{\prime}$ is damped by the exponential falloff of $\psi_{E}(x)$ so really $\int d x^{\prime} \rightarrow$ const, that is absorbed into A.)

