Physics 212b, Ken Intriligator lecture 5, Jan 24, 2018

- Last time, the Coulomb potential has an additional degeneracy, corresponding to the conserved Runge-Lenz vector ${ }^{1} \vec{M}=(2 m)^{-1}(\vec{p} \times \vec{L}-\vec{L} \times \vec{p})-\left(Z e^{2} / r\right) \vec{r}$. This satisfies $[\vec{M}, H]=0$. Since \vec{M} transforms as a vector, it satisfies $\left[M_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} M_{k}$. Also, it satisfies $\left[M_{i}, M_{j}\right]=-i \hbar \epsilon_{i j k}(2 / m) H L_{k}$. Acting on energy eigenstates, we can replace $H \rightarrow E$ and define $\vec{N}=(-m / 2 E)^{1 / 2} \vec{M}$, with $\left[N_{i}, N_{j}\right]=i \hbar \epsilon_{i j k} L_{k}$. Define $\vec{I}=\frac{1}{2}(\vec{L}+\vec{N})$ and $\vec{K}=\frac{1}{2}(\vec{L}-\vec{N})$, and see that they form decoupled $S U(2)$ representations:

$$
\left[I_{i}, I_{j}\right]=i \hbar \epsilon_{i j k} I_{k}, \quad\left[K_{i}, K_{j}\right]=i \hbar \epsilon_{i j k} K_{k}, \quad\left[I_{i}, K_{j}\right]=0
$$

and $\left[I_{i}, H\right]=\left[K_{i}, H\right]=0$. So energy eigenstates form representations of $S U(2)_{I}$ and $S U(2)_{K}$, labeled by i, k which can be integer or half-integer, and the degeneracy is $(2 i+$ 1) $(2 k+1)$. Also there is another relation: $\vec{I}^{2}-\vec{K}^{2}=\vec{L} \cdot \vec{N}=0$, which requires $i=k$. Also

$$
\vec{I}^{2}+\vec{K}^{2}=\frac{1}{2}\left(\vec{L}^{2}+\vec{N}^{2}\right)=\frac{1}{2}\left(\vec{L}^{2}-\frac{m}{2 E} \vec{M}^{2}\right)
$$

with $\vec{M}^{2}=\frac{2}{m} H\left(\vec{L}^{2}+\hbar^{2}\right)+Z^{2} e^{4}$. These imply $2 k(k+1) \hbar^{2}=\frac{1}{2}\left(-\hbar^{2}-\frac{m}{2 E} Z^{2} e^{4}\right)$ and thus $E=-\left(m Z^{2} e^{4} / 2 \hbar^{2}\right) n^{-2}$ with $n=2 k+1$. The degeneracy of $(2 k+1)^{2}$ is thus a degeneracy of n^{2}. The symmetry completely determines the hydrogen atom energy levels and degeneracy, with no need to solve the Schrodinger equation.

- Since $\vec{L}=\vec{I}+\vec{K}$, the rotation subgroup is a diagonal subgroup of $S U(2) \times S U(2)$; this is standard fact about how 3 d rotations are embedded in 4 d rotations. Also, \vec{L} is determined by the usual rules for addition of angular momentum from the \vec{I} and \vec{K} representation: ℓ can range from $|i-k|$ to $i+k$. Since $i=k$, this is $0 \ldots 2 k=n-1$.
- The 3d SHO $V(r)=\frac{1}{2} m \omega^{2} r^{2}$ also has an extra symmetry ${ }^{2}$ The extra conserved charges are a quadrupole tensor $Q_{(i j)}^{\ell=2}$, i.e. there are 5 extra generators, in addition to the 3 rotation generators, and the fact that they have $\ell=2$ means that they do not commute with rotations, i.e. the rotation symmetry is a subgroup of a bigger symmetry group ${ }^{3}$
${ }^{1}$ Classically, writing $V=-\kappa / r, E=-\kappa / 2 a$, where a is the semi-major axis (half the distance from the perihelion to the aphelion), and $\vec{L}^{2}=\mu \kappa a\left(1-e^{2}\right)$, with \vec{L} perpendicular to the orbit plane, and $|\vec{M}|=\kappa e$ where $e \equiv\left(a^{2}-b^{2}\right)^{1 / 2} / a$ is the eccentricity and \vec{M} points from the origin to the perihelion.
${ }^{2}$ Can again get elliptical classical orbits, with $E=\frac{1}{2} k\left(a^{2}+b^{2}\right)$ and $\vec{L}^{2}=m K a^{2} b^{2}$. Unlike the Coulomb potential, now the origin is at the center of the ellipse, not a focal point.
${ }^{3}$ In quantum field theory, the rotation symmetry $S U(2)$ is a subgroup of the Lorentz group $S O(1,3)$, which is a subgroup of the Poincare group that includes translations. There are strong constraints on embedding this group into a bigger group. Bigger groups include supersymmetry, and conformal symmetry; these are two things that I study in my own research.

The quantum energies are $E_{\vec{n}}=\left(n_{1}+n_{2}+n_{3}+\frac{3}{2}\right) \hbar \omega$, so taking $n=n_{1}+n_{2}+$ n_{3}, the degeneracy is $\frac{1}{2}(n+1)(n+2)$. In spherical coordinates, find $\ell=n, n-2, \ldots$, i.e. $n=k+2 \ell$, where $k=0,1,2, \ldots$, e.g. for $n=3$ get $\ell=1,3$ and the degeneracy is $10=3+7$. It turns out that $S U(2)_{\vec{L}}$ gets enhanced to $S U(3)$, and the n in the energy eigenstate labels the $S U(3)$ representation obtained in a fully-symmetrized tensor product of n fundamentals. (Aside: the strong interactions is based on an exact $S U(3)_{C}$ color gauge symmetry that rotates quark colors ($\mathrm{r}, \mathrm{g}, \mathrm{b}$). There is also an approximate $S U(3)_{F}$ global symmetry that rotates the three lightest quarks (u,d,s).) In terms of the creation and annihilation operators $a_{i}^{\dagger} a_{j}$ have commutation relations that are those of $U(3)$. The additional $U(1)$ generator, which decouples from $S U(3)$, is particle number, which is essentially H itself.

The are two ways to embed the rotation group in $S U(3)$. One is such that, $S U(3) \rightarrow$ $S U(2) \times U(1)$, with $\mathbf{3} \rightarrow \mathbf{2}_{1}+\mathbf{1}_{-2}$; that is not the correct embedding for this case. The correct embedding us such that $S U(3) \rightarrow S O(3)$, with $\mathbf{3} \rightarrow \mathbf{3}$. This is clear because the a_{i}^{\dagger} are in the $\mathbf{3}$ of $S U(3)$, and in the $\mathbf{3}$ vector of the rotation group $S O(3)$, e.g. $a_{i}^{\dagger}|0\rangle \sim x_{i}|0\rangle$ is clearly in the vector of the rotation group. The representation obtained by the symmetrized product in $\mathbf{3} \times \ldots \times \mathbf{3}$ then decomposes under the rotation group according to e.g. $(\mathbf{3} \times \mathbf{3})_{S}=\mathbf{5}+\mathbf{1}$ etc, agreeing with $n=k+2 \ell$.

