
Physics 212b, Ken Intriligator lecture 5, Jan 24, 2018

• Last time, the Coulomb potential has an additional degeneracy, corresponding to

the conserved Runge-Lenz vector1 ~M = (2m)−1(~p× ~L− ~L× ~p)− (Ze2/r)~r. This satisfies

[ ~M,H] = 0. Since ~M transforms as a vector, it satisfies [Mi, Lj] = ih̄ǫijkMk. Also,

it satisfies [Mi,Mj] = −ih̄ǫijk(2/m)HLk. Acting on energy eigenstates, we can replace

H → E and define ~N = (−m/2E)1/2 ~M , with [Ni, Nj] = ih̄ǫijkLk. Define ~I = 1
2 (
~L + ~N)

and ~K = 1
2 (
~L− ~N), and see that they form decoupled SU(2) representations:

[Ii, Ij] = ih̄ǫijkIk, [Ki, Kj] = ih̄ǫijkKk, [Ii, Kj] = 0

and [Ii, H] = [Ki, H] = 0. So energy eigenstates form representations of SU(2)I and

SU(2)K , labeled by i, k which can be integer or half-integer, and the degeneracy is (2i +

1)(2k+1). Also there is another relation: ~I2− ~K2 = ~L · ~N = 0, which requires i = k. Also

~I2 + ~K2 = 1
2
(~L2 + ~N2) = 1

2
(~L2 −

m

2E
~M2),

with ~M2 = 2
m
H(~L2 + h̄2) + Z2e4. These imply 2k(k + 1)h̄2 = 1

2
(−h̄2 − m

2E
Z2e4) and

thus E = −(mZ2e4/2h̄2)n−2 with n = 2k + 1. The degeneracy of (2k + 1)2 is thus a

degeneracy of n2. The symmetry completely determines the hydrogen atom energy levels

and degeneracy, with no need to solve the Schrodinger equation.

• Since ~L = ~I + ~K, the rotation subgroup is a diagonal subgroup of SU(2)× SU(2);

this is standard fact about how 3d rotations are embedded in 4d rotations. Also, ~L

is determined by the usual rules for addition of angular momentum from the ~I and ~K

representation: ℓ can range from |i− k| to i+ k. Since i = k, this is 0 . . .2k = n− 1.

• The 3d SHO V (r) = 1
2mω2r2 also has an extra symmetry2 The extra conserved

charges are a quadrupole tensor Qℓ=2
(ij) , i.e. there are 5 extra generators, in addition to the

3 rotation generators, and the fact that they have ℓ = 2 means that they do not commute

with rotations, i.e. the rotation symmetry is a subgroup of a bigger symmetry group3

1 Classically, writing V = −κ/r, E = −κ/2a, where a is the semi-major axis (half the distance

from the perihelion to the aphelion), and ~L2 = µκa(1 − e2), with ~L perpendicular to the orbit

plane, and | ~M | = κe where e ≡ (a2 − b2)1/2/a is the eccentricity and ~M points from the origin to

the perihelion.
2 Can again get elliptical classical orbits, with E = 1

2
k(a2 + b2) and ~L2 = mKa2b2. Unlike the

Coulomb potential, now the origin is at the center of the ellipse, not a focal point.
3 In quantum field theory, the rotation symmetry SU(2) is a subgroup of the Lorentz group

SO(1, 3), which is a subgroup of the Poincare group that includes translations. There are strong

constraints on embedding this group into a bigger group. Bigger groups include supersymmetry,

and conformal symmetry; these are two things that I study in my own research.
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The quantum energies are E~n = (n1 + n2 + n3 + 3
2)h̄ω, so taking n = n1 + n2 +

n3, the degeneracy is 1
2 (n + 1)(n + 2). In spherical coordinates, find ℓ = n, n − 2, . . .,

i.e. n = k + 2ℓ, where k = 0, 1, 2, . . ., e.g. for n = 3 get ℓ = 1, 3 and the degeneracy

is 10 = 3 + 7. It turns out that SU(2)~L gets enhanced to SU(3), and the n in the

energy eigenstate labels the SU(3) representation obtained in a fully-symmetrized tensor

product of n fundamentals. (Aside: the strong interactions is based on an exact SU(3)C

color gauge symmetry that rotates quark colors (r,g,b). There is also an approximate

SU(3)F global symmetry that rotates the three lightest quarks (u,d,s).) In terms of the

creation and annihilation operators a†iaj have commutation relations that are those of

U(3). The additional U(1) generator, which decouples from SU(3), is particle number,

which is essentially H itself.

The are two ways to embed the rotation group in SU(3). One is such that, SU(3) →

SU(2) × U(1), with 3 → 21 + 1−2; that is not the correct embedding for this case. The

correct embedding us such that SU(3) → SO(3), with 3 → 3. This is clear because

the a†i are in the 3 of SU(3), and in the 3 vector of the rotation group SO(3), e.g.

a†i |0〉 ∼ xi|0〉 is clearly in the vector of the rotation group. The representation obtained

by the symmetrized product in 3 × . . . × 3 then decomposes under the rotation group

according to e.g. (3× 3)S = 5+ 1 etc, agreeing with n = k + 2ℓ.
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