Physics 212b, Ken Intriligator lecture 6, Jan 29, 2018

- Parity P acts as $P=P^{\dagger}=P^{-1}$ with $P \vec{v} P=-\vec{v}$ and $P \vec{a} P=\vec{a}$ for vectors (e.g. \vec{x} and \vec{p}) and axial pseudo-vectors (e.g. \vec{L} and \vec{B}) respectively. Note that it is not a rotation. Parity preserves all the basic commutation relations, but it is not necessarily a symmetry of the Hamiltonian. The names scalar and pseudo scalar are often used to denote parity even vs odd: $P \mathcal{O} P=\mathcal{O}$ for "scalar" operators (like \vec{x}^{2} or \vec{L}^{2}, and $P \mathcal{O}^{\prime} P=-\mathcal{O}^{\prime}$ for pseudo scalar operators (like $\vec{S} \cdot \vec{x}$).
- Nature respects parity aside from some tiny effects at the fundamental level. E.g. in electricity and magnetism, we can preserve Maxwell's equations via $\vec{V} \rightarrow \overrightarrow{\mathcal{Z}} V$ and $\vec{V}_{\text {axial }} \rightarrow+\vec{V}_{\text {axial }}$.
- In QM, parity is represented by a unitary operator such that $P|\vec{r}\rangle=|-\vec{r}\rangle$ and $P^{2}=1$. So the eigenvectors of P have eigenvalue ± 1. A state is even or odd under parity if $P|\psi\rangle= \pm|\psi\rangle$; in position space, $\psi(-\vec{x})= \pm \psi(\vec{x})$. In radial coordinates, parity takes $\cos \theta \rightarrow-\cos \theta$ and $\phi \rightarrow \phi+\pi$, so $P|\alpha, \ell, m\rangle=(-1)^{\ell}|\alpha, \ell, m\rangle$. This is clear also from the $\ell=1$ case, any getting general ℓ from tensor products.

If $[H, P]=0$, then the non-degenerate energy eigenstates can be written as P eigenstates.

Parity in 1d: $P x P=-x$ and $P p P=-p$. The Hamiltonian respects parity if $V(-x)=$ $V(x)$. The energy eigenstates can thus be chosen to be even or odd. E.g. 1d particle in a box. E.g. for 1 d , SHO the state $|n\rangle$ has parity $(-1)^{n}$, since the a and a^{\dagger} operators are parity odd. Similarly for the 3 d SHO: the state with quantum numbers $\left|n_{x}, n_{y}, n_{z}\right\rangle$ has parity $(-1)^{n_{x}+n_{y}+n_{z}}$. This agrees with the fact that the parity is $(-1)^{\ell}$, since $\ell=n \bmod$ 2.

Recall example of bound states in a potential well, $V(x)=-V_{0} \theta\left(\frac{1}{2} a-|x|\right)$. Write down even and odd parity solutions, and the conditions from having ψ and ψ^{\prime} continuous. Even parity solutions thus have $p \tan (p a / 2 \hbar)=\hbar \kappa$ with $p \equiv \sqrt{(2 m(E+|V|)}$ and $\hbar \kappa=\sqrt{-2 m E}$, where $E<0$. Odd parity solutions have $p \cot (p a / 2 \hbar)=-\hbar \kappa$. For a shallow V_{0}, only one even solution, then get alternating even / odd solutions as V_{0} increases.
E.g. symmetric double well, or SHO-type double well: $E_{A}>E_{S}$. Double well example (mention $e^{-S_{E u c} / \hbar}$ tunneling and instantons).

- Parity selection rules: if $[H, P]=0$, time evolution preserves parity and the states and operators can be assigned definite parity. Show that $\langle\chi| \mathcal{O}|\psi\rangle=0$ unless $(-1)^{P_{\chi}+P_{\mathcal{O}}+P_{\psi}}=1$, where $(-1)^{P_{\chi, \psi, \mathcal{O}}}$ are the parity signs of the operators and states. Illustrate with SHO examples.

