Physics 212b, Ken Intriligator lecture 7, Jan 31, 2018

• Continue with parity. As mentioned last time, P is represented by a unitary operator and if [H, P] = 0 then the theory has a parity symmetry, preserved by time evolution, and this leads to selection rules, $\langle \chi | \mathcal{O} | \psi \rangle = 0$ unless $(-1)^{P_{\chi} + P_{\mathcal{O}} + P_{\psi}} = 1$.

Note that if the theory respects parity and $|E_n\rangle$ is non-degenerate, then it is a parity eigenstate and the selection rule implies that $\langle E_n | \vec{v} | E_n \rangle = 0$ for any vector, e.g. zero dipole moment expectation value.

The groundstate is in general parity even. E.g. double SHO, (mention $e^{-S_{Euc}/\hbar}$ tunneling and instantons). find $E_A > E_S$. The non-stationary states $|R\rangle$ or $|L\rangle$, given by $(|S\rangle \pm |A\rangle)/\sqrt{2}$ are non-stationary, oscillating with frequency $\omega = (E_A - E_S)/\hbar$. Ammonia molecule NH_3 behaves like this, oscillating between N above vs below the triangle of the H_3 . R vs L type molecules, with oscillation times like 10^6 years, organic material often one or the other, vs synthetic producing equal amounts.

In 3d, parity takes $\cos \theta \to -\cos \theta$ and $\phi \to \phi + \pi$, so $P|\alpha, \ell, m\rangle = (-1)^{\ell} |\alpha, \ell, m\rangle$. This is clear also from the $\ell = 1$ case, any getting general ℓ from tensor products. E.g. for the 3d SHO: the state with quantum numbers $|n_x, n_y, n_z\rangle$ has parity $(-1)^{n_x+n_y+n_z}$. This agrees with the fact that the parity is $(-1)^{\ell}$, since $\ell = n \mod 2$.

• Time reversal, $t \to -t$, is a symmetry of usual classical physics. Time reversal in QM is an anti-unitary operator. E.g. if $\psi(\vec{x}, t)$ is a solution of the SE, then so is $\psi^*(\vec{x}, -t)$. The complex conjugation is the anti-unitary part. Writing the time reversal operator as T, it must be anti-unitary because we want $T^{-1}U(t)T = U(-t)$, but $T^{-1}HT = H$ if the theory is time-reversal invariant, so $T^{-1}HT \neq -H$. Time reversal acts as e.g. $T^{-1}\vec{x}T = \vec{x}$ and $T^{-1}\vec{p}T = -\vec{p}$, which again forces anti-unitarity, to preserve the commutation relations.

An anti-unitary linear operator acts as $T^{-1}(a\hat{A} + b\hat{B})T = a^*T^{-1}\hat{A}T + b^*T^{-1}\hat{B}T$. In terms of states $T(a|\psi\rangle + b|\chi\rangle) = a^*T|\psi\rangle + b^*T|\chi\rangle$. Can write T = UK where K is complex conjugation. In position space this takes $\vec{x} \to \vec{x}$ and $\vec{p} \to -\vec{p}$ simply because \vec{x} is real and $\vec{p} = -i\hbar \nabla$ is imaginary, so we can take T = UK with U = 1 in position space.

 $T|\vec{p}\rangle = |-\vec{p}\rangle$ and $T|\vec{x}\rangle = |\vec{x}\rangle$. If $|\psi\rangle = \int d^3\vec{x}|\vec{x}\rangle\langle\vec{x}|\psi\rangle$, then $T|\psi\rangle = \int d^3\vec{x}|\vec{x}\rangle\langle\vec{x}|\psi\rangle^*$.

 $T\vec{J} = -\vec{J}T$, since the rotation operator and time reversal commute (and time reversal flips the *i* in the rotation operator). $T|\ell, m\rangle = (-1)^m |\ell, -m\rangle$, which is seen in the $Y_{\ell m}$ since *T* complex conjugates it. More generally, $T^2 = 1$ for integer *j*.