Physics 212b, Ken Intriligator lecture 7, Jan 31, 2018

- Continue with parity. As mentioned last time, P is represented by a unitary operator and if $[H, P]=0$ then the theory has a parity symmetry, preserved by time evolution, and this leads to selection rules, $\langle\chi| \mathcal{O}|\psi\rangle=0$ unless $(-1)^{P_{\chi}+P_{\mathcal{O}}+P_{\psi}}=1$.

Note that if the theory respects parity and $\left|E_{n}\right\rangle$ is non-degenerate, then it is a parity eigenstate and the selection rule implies that $\left\langle E_{n}\right| \vec{v}\left|E_{n}\right\rangle=0$ for any vector, e.g. zero dipole moment expectation value.

The groundstate is in general parity even. E.g. double SHO, (mention $e^{-S_{E u c} / \hbar}$ tunneling and instantons). find $E_{A}>E_{S}$. The non-stationary states $|R\rangle$ or $|L\rangle$, given by $(|S\rangle \pm|A\rangle) / \sqrt{2}$ are non-stationary, oscillating with frequency $\omega=\left(E_{A}-E_{S}\right) / \hbar$. Ammonia molecule NH_{3} behaves like this, oscillating between N above vs below the triangle of the $H_{3} . R$ vs L type molecules, with oscillation times like 10^{6} years, organic material often one or the other, vs synthetic producing equal amounts.

In 3d, parity takes $\cos \theta \rightarrow-\cos \theta$ and $\phi \rightarrow \phi+\pi$, so $P|\alpha, \ell, m\rangle=(-1)^{\ell}|\alpha, \ell, m\rangle$. This is clear also from the $\ell=1$ case, any getting general ℓ from tensor products. E.g. for the 3 d SHO: the state with quantum numbers $\left|n_{x}, n_{y}, n_{z}\right\rangle$ has parity $(-1)^{n_{x}+n_{y}+n_{z}}$. This agrees with the fact that the parity is $(-1)^{\ell}$, since $\ell=n \bmod 2$.

- Time reversal, $t \rightarrow-t$, is a symmetry of usual classical physics. Time reversal in QM is an anti-unitary operator. E.g. if $\psi(\vec{x}, t)$ is a solution of the SE , then so is $\psi^{*}(\vec{x},-t)$. The complex conjugation is the anti-unitary part. Writing the time reversal operator as T, it must be anti-unitary because we want $T^{-1} U(t) T=U(-t)$, but $T^{-1} H T=H$ if the theory is time-reversal invariant, so $T^{-1} H T \neq-H$. Time reversal acts as e.g. $T^{-1} \vec{x} T=\vec{x}$ and $T^{-1} \vec{p} T=-\vec{p}$, which again forces anti-unitarity, to preserve the commutation relations.

An anti-unitary linear operator acts as $T^{-1}(a \hat{A}+b \hat{B}) T=a^{*} T^{-1} \hat{A} T+b^{*} T^{-1} \hat{B} T$. In terms of states $T(a|\psi\rangle+b|\chi\rangle)=a^{*} T|\psi\rangle+b^{*} T|\chi\rangle$. Can write $T=U K$ where K is complex conjugation. In position space this takes $\vec{x} \rightarrow \vec{x}$ and $\vec{p} \rightarrow-\vec{p}$ simply because \vec{x} is real and $\vec{p}=-i \hbar \nabla$ is imaginary, so we can take $T=U K$ with $U=1$ in position space.
$T|\vec{p}\rangle=|-\vec{p}\rangle$ and $T|\vec{x}\rangle=|\vec{x}\rangle$. If $|\psi\rangle=\int d^{3} \vec{x}|\vec{x}\rangle\langle\vec{x} \mid \psi\rangle$, then $T|\psi\rangle=\int d^{3} \vec{x}|\vec{x}\rangle\langle\vec{x} \mid \psi\rangle^{*}$.
$T \vec{J}=-\vec{J} T$, since the rotation operator and time reversal commute (and time reversal flips the i in the rotation operator). $T|\ell, m\rangle=(-1)^{m}|\ell,-m\rangle$, which is seen in the $Y_{\ell m}$ since T complex conjugates it. More generally, $T^{2}=1$ for integer j.

