Physics 212b, Ken Intriligator lecture 8, Feb 5, 2018

- Continue with time reversal: $T: t \rightarrow-t, \vec{x} \rightarrow \vec{x}, \vec{p} \rightarrow-\vec{p}, \vec{S} \rightarrow-\vec{S}, \vec{J} \rightarrow-\vec{J}$, $\vec{E} \rightarrow \vec{E}, \vec{B} \rightarrow-\vec{B}$.

This is a symmetry of usual classical physics. Time reversal in QM is an anti-unitary operator. E.g. if $\psi(\vec{x}, t)$ is a solution of the SE , then so is $\psi^{*}(\vec{x},-t)$. The complex conjugation is the anti-unitary part. Writing the time reversal operator as T, it must be anti-unitary because we want $T^{-1} U(t) T=U(-t)$, but $T^{-1} H T=H$ if the theory is time-reversal invariant (i.e. $T^{-1} H T \neq-H$). Time reversal acts as e.g. $T^{-1} \vec{x} T=\vec{x}$ and $T^{-1} \vec{p} T=-\vec{p}$, which again forces anti-unitarity, to preserve the commutation relations.

An anti-unitary linear operator acts as $T^{-1}(a \hat{A}+b \hat{B}) T=a^{*} T^{-1} \hat{A} T+b^{*} T^{-1} \hat{B} T$. In terms of states $T(a|\psi\rangle+b|\chi\rangle)=a^{*} T|\psi\rangle+b^{*} T|\chi\rangle$. Can write $T=U K$ where K is complex conjugation. In position space this takes $\vec{x} \rightarrow \vec{x}$ and $\vec{p} \rightarrow-\vec{p}$ simply because \vec{x} is real and $\vec{p}=-i \hbar \nabla$ is imaginary, so we can take $T=U K$ with $U=1$ in position space.
$T|\vec{p}\rangle=|-\vec{p}\rangle$ and $T|\vec{x}\rangle=|\vec{x}\rangle$. If $|\psi\rangle=\int d^{3} \vec{x}|\vec{x}\rangle\langle\vec{x} \mid \psi\rangle$, then $T|\psi\rangle=\int d^{3} \vec{x}|\vec{x}\rangle\langle\vec{x} \mid \psi\rangle^{*}$.
$T \vec{P}=-\vec{P} T$, since the translation operator commutes with T. Likewise, $T \vec{J}=-\vec{J} T$, since the rotation operator and time reversal commute (and time reversal flips the i in the rotation operator).
$T|\ell, m\rangle=(-1)^{m}|\ell,-m\rangle$, which is seen in the $Y_{\ell m}$ since T complex conjugates it. More generally, $T^{2}=1$ for integer j.

- The anti-unitary operator T satsfies $\langle T \psi \mid T \chi\rangle=\langle\psi \mid \chi\rangle^{*}=\langle\chi \mid \psi\rangle$, and likewise $\langle K \psi \mid K \chi\rangle=\langle\chi \mid \psi\rangle$.
- Terms in H that respect $T: \vec{p}^{2}, V(\vec{x}), \vec{L} \cdot \vec{S}, \vec{p} \cdot \vec{S}$. Possible term that are T odd: $p \cdot \vec{x}, \vec{S} \cdot \vec{x}$.
- Example, SHO satisfies $T H=H T$, so T is a symmetry. Note that $a=\sqrt{\frac{m \omega}{2 \hbar}}(x+$ $i p / m \omega), a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}}(x-i p / m \omega),\left[a, a^{\dagger}\right]=1$, and $T a=a T$ and $T a^{\dagger}=a^{\dagger} T$. So we can take $T|n\rangle=|n\rangle$ for all n. It is expected that the energy eigenstates are T eigenstates, since T is a symmetry and the states are non-degenerate. The fact that they are all T even shows that $\psi_{n}(x)=\langle x \mid n\rangle$ are all real.

Theorem: if H is invariant under T and $|n\rangle$ is non-degenerate, then $\langle\vec{x} \mid n\rangle$ must be real (the phase must be a constant). Follows from fact that $|n\rangle$ and $T|n\rangle$ must be degenerate, and then by assumption must be the same.

For the SHO, we can form states like $(|0\rangle+i|1\rangle) / \sqrt{2}$ that are not energy eigenstates and not T eigenstates, of course.

- Note that $T^{2} \neq 1$ for states of odd spin: indeed, $T^{2}=(-1)^{2 j}$. E.g. consider spin $1 / 2$, so we can represent \vec{S} with $\frac{1}{2} \hbar \sigma$. Writing $T=U K$, note that K flips the sign of S_{y} but not S_{x} or S_{z}. Consider $|\hat{n} ;+\rangle=e^{-i S_{z} \alpha / \hbar} e^{-i S_{y} \beta / \hbar}|+\rangle$, and then $T|\hat{n} ;+\rangle=$ $e^{-i S_{z} \alpha / \hbar} e^{-i S_{y} \beta / \hbar} T|+\rangle=\eta e^{-i S_{z} \alpha / \hbar} e^{-i S_{y} \beta / \hbar}|-\rangle$ for some phase η. Find $T=\eta e^{-i \pi J_{y} / \hbar} K$ where K denotes complex conjugation. T^{2} is a 2π rotation, so $T^{2}=(-1)^{2 j}$. Can take $T|j, m\rangle=i^{2 m}|j,-m\rangle$.

Let A be an operator that is T even or odd, then $\langle\alpha, j, m| A|\alpha j m\rangle= \pm\langle\alpha, j,-m| A|\alpha \cdot j,-m\rangle$. If $A=T_{0}^{(k)}$, then we can do a π rotation to convert the $-m$ back to $+m$ on the RHS, getting a factor of $(-1)^{k}$ from rotating $T_{0}^{(k)}$ by π. The selection rule implies that time reversal even operators can only have a non-zero expectation value in the $|\alpha j m\rangle$ state if k is even, and likewise for odd operators under T, k must be odd.

- Electricity and magnetism preserve both P and T. Recall $L=L_{0}+\frac{q}{c} \vec{v} \cdot \vec{A}-q \phi$ and $\vec{p}=m \vec{v}+\frac{q}{c} \vec{A}$ and $H=(\vec{p}-q \vec{A} / c)^{2} / 2 m+q \phi$. Under T, take $\vec{J} \rightarrow-\vec{J}, \vec{A} \rightarrow-\vec{A}, \vec{p} \rightarrow-\vec{p}$, $\vec{v} \rightarrow-\vec{v}, \vec{E} \rightarrow \vec{E}, \vec{B} \rightarrow \vec{B}$, preserves e.g. $\vec{F}=q \vec{E}+\frac{q}{c} \vec{v} \times \vec{B}$.
- But if \vec{B} is an external magnetic field, that "spontaneously" breaks the symmetries, since then can't have $\vec{B} \rightarrow-\vec{B}$. The $\vec{p} \cdot \vec{A}+\vec{A} \cdot \vec{p}$ break T, so $T H \neq H T$. Recall also spin $1 / 2$ in $H=-\left(g e / 2 m_{e} c\right) \vec{S} \cdot \vec{B}$ and note that it respects both P and T, with both \vec{S} and \vec{B} odd. E.g. $T|+\rangle=|-\rangle$ and the two states have different energy.

Kramers degeneracy: if a system (e.g. a gas or crystal) is made up of atoms that each have an odd number of electrons, then $T^{2}=-1$ and there has to be at least a 2 fold degeneracy, i.e. $|n\rangle$ and $T|n\rangle$. Cannot have $T|n\rangle=\eta|n\rangle$, since that would lead to $T^{2}|n\rangle=+|n\rangle$, incompatible with $T^{2}=-1$. The degeneracy can be lifted by placing the system in an external magnetic field. Note T flips the sign of \vec{B}, so an external $\vec{B}_{\text {ext }}$ breaks T symmetry.

