Physics 212b, Ken Intriligator lecture 9, Feb 7, 2018

- Aside: in QFT, the fields form representations of the Lorentz group, which can be thought of (in Euclidean space) as $S O(4) \cong S U(2)_{L} \times S U(2)_{R}$, i.e. the same group that we met for the 3 d Coulomb potential. Fermions can be left-handed chiral, in the $(2,1)$ dimensional representation or right-handed chiral in the $(1,2)$ representation, if they are massless. All of the Fermions of the standard model are massless, and chiral, in the needed sense; they get their mass from coupling to a scalar field, called the Higgs field, which has a Bose-Einstein condensate. Parity exchanges left-handed with right-handed.

It is useful to also consider charge conjugation C, which e.g. takes $C A_{\mu} C=-A_{\mu}$ and replaces e.g. the electron field with its conjugate positron field. It can be shown that the combination CPT can only be violated if Lorentz invariance is violated; there is no current reason to expect such violation.

Most of the Standard Model preserves C, P, and T. The weak interactions $S U(2)_{W}$ violate P and C separately, preserving $C P$ and T; for example, P exchanges $S U(2)_{L} \leftrightarrow$ $S U(2)_{R}$ if we think about rotations + boosts in terms of $S U(2)_{L} \times S U(2)_{R}$ (similar to what we saw for the hydrogen atom's symmetry, with $S U(2)_{I}$ and $\left.S U(2)_{K}\right)$, but the weak interactions only couple to the $S U(2)_{L}$ part of the fermions. This is the fundamental reason for the parity violating effect observed first by Chien-Shiung Wu in 1956: Co \rightarrow $N i+e^{-}+\bar{\nu}^{e}+2 \gamma$ (i.e. $n \rightarrow p+e^{-}+\bar{\nu}^{e}$, i.e. $d \rightarrow u+W^{-}$and $W^{-} \rightarrow e^{-}+\bar{\nu}_{e}$) and Wu's experiment showed that the electrons coming out prefer to be anti-aligned with the nuclear spin \rightarrow Lee + Yang Nobel prize in 1957.

Feynman's story. Titanic movie set.
There is a $\theta \vec{E}^{a} \cdot \vec{B}^{a}$ interaction for the strong force, that violates $C P$ and T separately. The particles come in 3 families and thanks to the 3rd family there are couplings of Fermions to the Higgs field that violate $C P$ and T, preserving $C P T$; they violate T because they have a complex phase that cannot be rotated away, and the fact that \mathcal{L} has a non-real coefficient violates T because it is an anti-unitary operator. CP violation is needed to explain the observed matter / anti-matter asymmetry of the Universe, but the CP violation in the SM is quite tiny and seems to be insufficient to get the observed asymmetry; this is one of many hints about needed physics beyond the SM.

- Permutation symmetry. E.g. 2 particle state for free, non-interacting particles are given by $\left|k, k^{\prime}\right\rangle=|k\rangle_{1} \otimes\left|k^{\prime}\right\rangle_{2}$. Then $P_{12}\left|k, k^{\prime}\right\rangle=\left|k^{\prime}, k\right\rangle$. Note that $P_{12}^{2}=1$, so the eigenvalues are ± 1. Can form $\left|k, k^{\prime}\right\rangle_{ \pm} \equiv \frac{1}{\sqrt{2}}\left(\left|k, k^{\prime}\right\rangle \pm\left|k^{\prime}, k\right\rangle\right.$), which are eigenstates of P_{12}
with eigenvalue ± 1. The exchange generator P_{12} is the symmetry generator of the group $Z_{2} \cong S_{2}$, and it can be represented by either 1 or -1 .

Now consider 2 particles with $H=H_{1}+H_{2}+H_{\text {int }}$, where $H_{\text {int }}$ is symmetric under exchange of the two particles and $H_{1}\left(\vec{x}_{1}, \vec{p}_{1}\right)=H_{2}\left(\vec{x}_{2}, \vec{p}_{2}\right)$. Then $P_{12} H=H P_{12}$ where P_{12} is the exchange operator. Can take states to be eigenkets of P_{12}, with eigenvalue ± 1.

For 3 objects there are two groups that we can consider: Z_{3} is the group of all cyclic elements (3 elements), and S_{3} is the group of arbitrary permutations ($3!=6$ elements). For 3 decoupled 1d SHOs, for example, we can consider $\left|n_{1}, n_{2}, n_{3}\right\rangle \equiv\left|n_{1}\right\rangle \otimes\left|n_{2}\right\rangle \otimes\left|n_{2}\right\rangle$ (this is the same as for the 3 d SHO , but the interpretation here is different). Then we can consider $\left|n_{1}, n_{2}, n_{3}\right\rangle_{ \pm} \equiv \frac{1}{\sqrt{6}}\left(\left|n_{1}, n_{2}, n_{3}\right\rangle \pm(\right.$ perms $\left.)\right)$. All permutations can be written as products of exchanges, e.g. cyclic permutations are an even number of exchanges. The signs in the previous wave function is +1 for cyclic permutations of (n_{1}, n_{2}, n_{3}) and -1 for the others, like $\epsilon_{i j k}$.

- Identical particles: if there are N identical bosons, the wave function must be in a fully symmetric representation of S_{N}, i.e. $P_{i j}=1$ for exchanging any two particles. For N identical fermions, must be eigenstates with eigenvalue -1 for all $P_{i j}$. Spin statistics theorem: half integer spin particles are fermions, and integer spin particles are bosons.
- Two electron system $\psi(1,2)=\phi\left(\vec{x}_{1}, \vec{x}_{2}\right) \chi$, where $\chi=|j=1, m\rangle_{S}$ or $|j=0, m=0\rangle_{A}$. The condition $\psi(2,1)=-\psi(1,2)$ implies that either ϕ has $P_{12}=+1$ and $\chi=\chi_{A}$ (singlet), or ϕ has $P_{12}=-1$ and $\chi=\chi_{S}$ (triplet); so the electrons must avoid each other in the triplet state (while for the singlet there is enhanced probability of finding them nearby).

Show $\vec{S}_{1} \cdot \vec{S}_{2}=\hbar^{2} / 4$ for the triplet and $\vec{S}_{1} \cdot \vec{S}_{2}=-3 \hbar^{2} / 4$ for the singlet.

- Consider two distant electrons, with $\psi(1,2)=\frac{1}{\sqrt{2}}\left(\psi_{1}\left(\vec{r}_{1}\right) \psi_{2}\left(\vec{r}_{2}\right) \pm\left(\vec{r}_{1} \leftrightarrow \vec{r}_{2}\right)\right)$. If we don't observe electron 2 , then $P(\vec{r})=\int d^{3} \vec{r}_{2}\left|\psi\left(\vec{r}, \vec{r}_{2}\right)\right|^{2}+\int d^{3} \vec{r}_{1}\left|\psi\left(\vec{r}_{1}, \vec{r}\right)\right|^{2}$. If the wave functions have no overlap, then the cross terms contribute negligibly, and this gives $P(\vec{r}) \approx$ $\left|\psi_{1}(\vec{r})\right|^{2}+\left|\psi_{2}(\vec{r})\right|^{2} \approx\left|\psi_{1}(\vec{r})\right|^{2}$ and the distant electron decouples, despite the fact that the wave function is antisymmetric under exchanging
- Example of N identical spin $1 / 2$ Fermions in a potential well. Suppose that the total spin is $N / 2$, i.e. fully symmetric. Then the wave function must be fully antisymmetric, so fill up the first N energy levels (filling the Landau levels). The wave function is a Slater determinant $\psi\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)=N^{-1 / 2} \operatorname{det}_{i j} \psi_{i}\left(\vec{r}_{j}\right)$.
- Helium atom:

$$
H=\frac{\vec{p}_{1}^{2}}{2 m}+\frac{\vec{p}_{2}^{2}}{2 m}-\frac{2 e^{2}}{r_{1}}-\frac{2 e^{2}}{r_{2}}+\frac{e^{2}}{r_{12}} .
$$

In the approximation where we ignore the last term (electron-electron interaction), $H_{0}=$ $H_{1}+H_{2}$, so the energy eigenstates without imposing that the electrons are identical would be products $\psi_{n_{1}, \ell_{1}, m_{1}}\left(\vec{r}_{1}\right) \psi_{n_{2}, \ell_{2}, m_{2}}\left(\vec{r}_{2}\right)$. We need to symmetrize in $\vec{r}_{1} \leftrightarrow r_{2}$ and antisymmetrize in spin, or visa-versa to account for the fact that the electrons are identical.

- Aside on quarks and the strong force (QCD). E.g. baryons with $j=3 / 2$ have
 from u, d, s quarks (the 3 lighter flavors), there is an approximate $S U(3)_{F}$ symmetry and it is observed that the baryons are in the $(3 \times 3 \times 3)_{S}$ fully symmetric, i.e. the 10 dimensional representation (recall the 3 d SHO degeneracy of the $n=3$ state). The quarks have $j=1 / 2$ each and are Fermions, so the total state must be fully antisymmetric. The strong force $S U(3)_{C}$ gives the antisymmetry, since $\psi_{c_{1}} \psi_{c_{2}} \psi_{c_{3}} \epsilon^{c_{1} c_{2} c_{3}}$ is a color singlet (color is confined into neutral objects) and fully antisymmetric.

