140a HW 3 revised, Due 1/29/19

 \star All numbered exercises are from Blundell and Blundell.

- 1. Suppose that $df = xe^{-y}dx + g(x,y)dy$ is an exact differential.
 - (a) What is g(x, y)?

(b) What is $\int_{\Gamma} df$ where Γ is a semicircle of radius 5 that starts at (x, y) = (0, 0) and ends at (x, y) = (10, 0). Hint: do not actually integrate over Γ but, instead, argue that you can get the same answer by integrating over an easier path, and do that integral.

- $2.\ 12.3.$
- 3. (a) Calculate the work, in J, that is produced when 100g of liquid water vaporizes into steam at $100^{\circ}C$ against a pressure of one atmosphere (which is the same as the vapor pressure of steam at $100^{\circ}C$). The densities of water and steam at this pressure and temperature are $0.958g/cm^3$ and $0.598kg/m^3$, respectively.

(b) What energy change is involved in the process? The latent heat of vaporation (i.e. the added energy cost to convert from liquid to gas) is 2257J/g.

4. An ideal diatomic gas initially has $p_i = 4 \times 10^5 Pa$ and $V_i = 2m^3$ and $T_i = 293K$. It undergoes a reversible process with final pressure $p_f = 4p_i$.

(a) Suppose that the process is reversible and isothermal. What is V_f ? Compute ΔU , ΔW , and ΔQ for the process, in J.

(b) Suppose instead the process is reversible and adiabatic. What is V_f . Compute ΔU , ΔQ , and ΔW .

- 5. 13.4.
- 6. 13.5.