140a Lecture 10, 2/7/19
$\star$ Week 5 reading: Blundell + Blundell, chapters 14, 15, 16

- $d U=T d S-p d V$. As we discussed last time, this gives

$$
T=\left(\frac{\partial U}{\partial S}\right)_{V}, \quad p=-\left(\frac{\partial U}{\partial V}\right)_{S}
$$

Using the fact that partial derivatives commute, this leads to

$$
\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial p}{\partial S}\right)_{V}=\frac{\partial^{2} U}{\partial S \partial V}
$$

This is an example of a Maxwell relation. It can also be related to the statement that the Jacobian from the $p V$ diagram to the $T S$ diagram has unit Jacobian determinant, which is why we can compute the work from the area in either diagram

$$
d T d S=\frac{\partial(T, S)}{\partial(p, V)} d p d V=d p d V, \quad \frac{\partial(T, S)}{\partial(p, V)}=1
$$

This is because $\left(\frac{\partial T}{\partial V}\right)_{S}=\partial(T, S) / \partial(V, S)=\partial(p, V) / \partial(V, S)=-(\partial p / \partial S)_{V}$.

- $U(T, S)$ is nice if $T$ and $S$ are given. We can exchange conjugate variables $S \leftrightarrow T$ and $p \leftrightarrow V$ by modifying $U$, adding $p V$ or subtracting $T S$. Consider the enthalpy $H=U+p V$ and note that $d H=d U+p d V+V d p=T d S+V d p$, so we get

$$
T=\left(\frac{\partial H}{\partial S}\right)_{p}, \quad V=\left(\frac{\partial H}{\partial p}\right)_{S}
$$

The math of going from $U(S, V)$ to $H(U, p)$ is called a Legendre transform and is similar to what you know from classical mechanics with $L(x, v)$ vs $H(x, p)=p v-L$ with $p=$ $(\partial L / \partial v)_{x}$ and $v=(\partial H / \partial p)_{x}$.

Exercise: write down the Maxwell relation associated with $\partial^{2} H / \partial S \partial p$.

- Helmholtz free energy $F=U-T S$ has $d F=-S d T-p d V$ so $F=F(T, V)$ with

$$
S=-\left(\frac{\partial F}{\partial T}\right)_{V}, \quad p=-\left(\frac{\partial F}{\partial V}\right)_{T}
$$

Exercise: write down the Maxwell relation associated with $\partial^{2} F / \partial V \partial T$.

- Gibbs function $G=H-T S$ has $d G=-S d T+V d p$ so $G=G(T, p)$ with

$$
S=-\left(\frac{\partial G}{\partial T}\right)_{p}, \quad V=\left(\frac{\partial G}{\partial p}\right)_{T}
$$

Exercise: write down the Maxwell relation associated with $\partial^{2} G / \partial T \partial p$.

- Suppose that a system has initial energy $U_{0}$, and goes via some process to having energy $U(S, V)$. The system has $P, T$, and $V$, and the exterior surroundings to the system has pressure $P_{0}$ and temperature $T_{0}$. What is the work done? It depends on the process. We get

$$
d U_{s y s}=-\not d W_{\text {mech }}-P_{0} d V_{s y s}+d Q_{s y s},
$$

where we wrote the work done by the system as mechanical work (pushing a piston) plus the work done in expanding against the external pressure $P_{0}$. Moreover,

$$
d Q_{\text {sys }}=-\phi Q_{\text {surr }}=-T_{0} d S_{\text {surr }}
$$

Using $d S_{\text {universe }}=d S_{\text {sys }}+d S_{\text {surr }} \geq 0$, we get $-d S_{\text {surr }} \leq d S_{\text {sys }}$, and thus

$$
d W_{\text {mech }}=-d U_{\text {sys }}-P_{0} d V_{\text {sys }}+T_{0} d S_{\text {surr }} \leq-d\left(U-T_{0} S+P_{0} V\right)_{\text {sys }}
$$

Let's write this again, in terms of the availability

$$
\begin{gathered}
A(S, V) \equiv U-T_{0} S+P_{0} V \\
|\phi W|_{\max }=-d\left(U-T_{0} S+P_{0} V\right) \equiv-d A .
\end{gathered}
$$

If in equilibrium, we can use $d U=T d S-P d V$ to write

$$
\phi W_{\text {mech }} \leq-\left(\left(T-T_{0}\right) d S-\left(P-P_{0}\right) d V\right)
$$

Let's interpret the two terms. The first term is the maximum work a Carnot engine would do, operating between $T_{H}=T$ and $T_{C}=T_{0}$ : if everything were reversible, the heat leaving our system would be $Q_{H}=-T d S$, and that heat drives the Carnot engine, producing work $\phi W_{\text {carnot }}=-\left(T-T_{0}\right) d S$. The second term is the mechanical work, subtracting out the work done against the environment.

More generally, $d W_{\text {mech }}=P d V+\mathcal{E} d q+\vec{B} \cdot d \vec{M}+\vec{E} \cdot d P+\mu d n+\ldots \leq-d A$ applies to all types of work, not just $P d V$ work.

- Example: two identical blocks, with initial temperatures $T_{1, i}$ and $T_{2, i}$. What is the maximum work that can be extracted? Solution: hook them up to a Carnot engine. Maximum work when everything is reversible. This means that the total entropy of the combined system of blocks, plus engine, should be constant. Since $\Delta S_{\text {engine }}=0$, this
means $\Delta S_{\text {total }}=\Delta S_{1}+\Delta S_{2}$ should be zero. Implies that $T_{1} T_{2}$ must be constant. Implies that $T_{1, f}=T_{2, f}=\sqrt{T_{1, i} T_{2, i}}$. The above formula, with $S$ and $V$ constant, implies $\Delta W_{\text {max }}=-\Delta U=-\left(\Delta U_{1}+\Delta U_{2}\right)=-C\left(2 \sqrt{T_{1, i} T_{2, i}}-T_{1, i}-T_{2, i}\right)>0$.
- This illustrates a general kind of question that often comes up in thermodynamics. We start of being limited to consider equilibrium situations, because non-equilibrium processes are hard. But then broaden scope by consider bringing together two equilibrium subsystems, and study how the combined system reaches equilibrium. In general this happens such that

$$
d A \leq 0, \quad \text { with } \quad d A=0 \quad \text { when equilibrium is restored. }
$$

The above example had $S$ constant and $V$ constant, and so we get $d U \leq 0$, with $d U=0$ at equilibrium. In other words, for fixed $S$ and $V$, the process reaches equilibrium when $U$ is minimized.

