
140a Lecture 12, 2/19/19

⋆ Week 7 reading: Blundell+Blundell, chapters 20, 21.

• Next topic: the partition function Z =
∑

α e−βEα , where β ≡ 1/kBT . A powerful

starting point for computing the various state variables of a system if you know the energy

levels. In classical physics, the sum over energy levels is actually an integral over the (q, p)

phase space – we will discuss this case shortly. For quantum systems that are bound, the

sum is over the discrete energy levels of the Hamiltonian – we will discuss such cases first.

We will first discuss the case of a single particle in thermal equilibrium with a heat bath

at temperature T , and then extend to many particles. Note that if we have two decoupled

systems, with energy levels E1
α and E2

β , then Ztot = Z1Z2, so lnZ is extensive.

• Example: two state system, with energy levels ǫ0 and ǫ1: Z = e−βǫ0 + e−βǫ1 =

e−βǫave2 cosh(β∆/2), where ǫave =
1
2 (ǫ0 + ǫ1) and ∆ = ǫ1 − ǫ0.

• Quantum SHO: En = (n + 1
2 h̄ω) so Z = e−βh̄ω/2

∑

∞

n=0 e
−nh̄ω = e−

1
2βh̄ω(1 −

e−βh̄ω)−1. For low temperature, βh̄ω ≫ 1, then Z ≈ e−
1
2βh̄ω i.e. the system is in the

groundstate. For high temperature, βh̄ω ≪ 1, get Z ≈ 1/βω̄ = Zcl. We compared to a clas-

sical SHO: Zcl =
∫

dxdp
h e−β( 1

2m
p2+ 1

2
mω2x2). So Zcl = h−1

√
2πmkT

√

2πkT/mω2 = 1/βh̄ω.

• N-level (equally spaced) system: Z =
∑N−1

j=0 e−jβh̄ω = (1− e−Nβh̄ω)/(1− e−βh̄ω).

• Rotational energy levels EJ = h̄2J(J +1) with 2J +1 degeneracy: Z =
∑

∞

J=0(2J +

1)e−βh̄2J(J+1)/2I .

• Show that U = −d lnZ/dβ = kBT
2d lnZ/dT .

• S = −kB
∑

i Pi lnPi = kB
∑

i Pi(βEi + lnZ) = (U/T ) + kB lnZ.

• F = U − TS = −kB lnZ, i.e. Z = e−βF . Then S = −(∂F
∂T

)V = kB lnZ +

kBT (
∂ lnZ
∂T )V . Also CV = T ( ∂S∂T )V = kBT [2(

∂ lnZ
∂T )V + T (∂

2 lnZ
∂2T )V ].

• p = −( ∂F
∂V

)T = kBT (
∂ lnZ
∂V

)T .

• H = U + pV = kBT [T (
∂ lnZ
∂T )V + V (∂ lnZ

∂V )T ].

• G = F + pV = kBT [− lnZ + V (∂ lnZ
∂V )T ].

• Consider the two-level system with ǫave = 0. Z = 2 cosh(β∆/2), then U =

− d
dβ lnZ = −∆

2 tanh(β∆/2), and CV = (dU/dT ) = kB(β∆/2)2sech2(β∆/2) and F =

−kBT lnZ = −kBT ln(2 cosh(β∆/2)) and S = (U − F )/T = −(∆/2T ) tanh(β∆/2) +

kB ln[2 cosh(β∆/2)]. Note that S(T → 0) → 0 (i.e. Ω → 1 the groundstate) and

S(T → ∞) → kB ln 2 (since Ω → 2, both states are equally likely at high T ). Plot

CV /kB as a function of kBT/∆: zero at low and high temperature, with maximum at

T ∼= ∆/kB the “Schottky anomaly.”
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