
140a Lecture 13, 2/21/19

⋆ Week 7 reading: Blundell+Blundell, chapters 20, 21.

• Last time: Z =
∑

α e
−βEα , where β ≡ 1/kBT . P (Eα) = e−βEα/Z. U =

−d lnZ/dβ = kBT
2d lnZ/dT . S = kB

∑
i Pi(βEi+lnZ) = (U/T )+kB lnZ. F = U−TS =

−kB lnZ. CV = T ( ∂S∂T )V = kBT [2(
∂ lnZ
∂T )V + T (∂

2 lnZ
∂2T )V ]. p = −( ∂F∂V )T = kBT (

∂ lnZ
∂V )T .

H = U + pV = kBT [T (
∂ lnZ
∂T )V + V (∂ lnZ

∂V )T ]. G = F + pV = kBT [− lnZ + V (∂ lnZ
∂V )T ].

Example: the two-level system with E± = ±1
2
∆: Z = 2 cosh(β∆/2), then U =

− d
dβ

lnZ = −∆
2
tanh(β∆/2), and CV = (dU/dT ) = kB(β∆/2)

2sech2(β∆/2) and F =

−kBT lnZ = −kBT ln(2 cosh(β∆/2)) and S = (U − F )/T = −(∆/2T ) tanh(β∆/2) +

kB ln[2 cosh(β∆/2)]. Note that S(T → 0) → 0 (i.e. Ω → 1 the groundstate) and S(T →

∞) → kB ln 2 (since Ω → 2, both states are equally likely at high T ). Plot CV /kB as a

function of kBT/∆: zero at low and high temperature, with maximum at T ∼= ∆/kB the

“Schottky anomaly.”

• Example: SHO: Z = e−
1
2βh̄ω/(1−e−βh̄ω) leads to U = d lnZ/dβ = h̄ω( 12 +

1
eβh̄ω−1

).

Then CV = (dU/dT ) = kB(βh̄ω)
2eβh̄ω/(eβh̄ω−1)2. Note that for high temperature U and

CV are approximately given by the equipartition result, U ≈ kBT . Also, F = −kBT lnZ =
1
2
h̄ω+kBT ln(1−e−βh̄ω) and then S/kB = (U−F )/kBT = βh̄ω(eβh̄ω−1)−1−ln(1−e−βh̄ω).

Note that it obeys the third law, as expected since at T → 0 the SHO goes to the non-

degenerate groundstate. Also S(T → ∞) → kB ln(kBT/h̄ω).

• These examples illustrate general properties: for kBT small compared to the energy

level spacing, the system is approximate in the grounstate. If there are finite numbers of

levels and kBT is large compared with them, then the levels become occupied with equal

probabilities in the high temperature limit. If there are an infinite number of energy levels

(e.g. recovering classical physics at high energy according to the correspondence principle)

then the high temperature limit is consistent with the equipartition theorem.

• Note that if one combines two decoupled systems then Eij = E1
i +E

2
j so Z = Z1Z2,

fitting with lnZ being extensive.

• Spin 1/2 particle with magnetic moment µB in ~B = Bẑ has energy lev-

els given by the two-state system, E = ±µBB, and thus Z1 = 2 cosh(βµBB). A

paramagnetic consists of N decoupled such spins, so ZN = ZN
1 , and thus F =

−kBT lnZN = −NkBT ln[2 cosh(βµBB)] and the magnetic moment ism = −(∂F/∂B)T =

NµB tanh(βµBB). For βµBB large we see the spins aligned, for βµBB small they are ran-

dom. For small βµBB use tanh(βµBB) ≈ βµBB to get M = m/V ≈ Nµ2
BB/V kBT ≈

χB/µ0 so χ ≈ Nµ0µ
2
B/V kBT ∝ 1/T (Curie’s law).
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• Now let’s compute the partition function for a free particle of massm. Classically, we

integrate over phase space
∫
d3~r

∫
d3~p/h30e

−βE , where h0 is a phase space volume element.

By translation invariance, this gives Z = V
∫
d3~pe−βE/h30. In QM, we can relate this to

counting Fourier modes, via ~p = h̄~k. We recover the above expression with h0 → 2πh̄ = h.

Recall that when we count modes in a box, we have a factor of V d3~k
(2π)3

. For example

take ψ(~x) ∼ ei
~k·~x and impose periodicity in x → x + L, etc to get ~k = 2π~n/L and

then
∑

~n → V d3~k
(2π)3 . If we go to spherical coordinates and integrate over the solid angle

associated with ~k, we get g(k)dk = V k2dk/2π2 for the density of states.

• The single particle partition function is, in terms of the thermal wavelength λth:

Z1 =

∫ ∞

0

e−βh̄2k2/2mkBT g(k)dk ≡ V/λ3th, λth ≡ h/
√

2πmkBT .

• Distinguishable vs indistinguishable particles. If we have N copies of a system that

are distinguishable and non-interacting, then ZN = ZN
1 . But if the N copies are identical

and indistinguishable, then ZN 6= ZN
1 . Mention Gibbs’ paradox and resolution. Gibbs

noticed a paradox, and he also figured out the resolution. Consider free expansion of ideal

gas from Vi to Vf > Vi. Then ∆S = NkB ln(Vf/Vi). Suppose that Vf = 2Vi and that there

were two distinguishable gasses (say nitrogen and oxygen) on the two sides of the partition,

with N molecules of each, and then the partition is removed. Then ∆S = 2NkB ln 2. Now

suppose that the gas on the two sides is the same and indistinguishable. Then we should

find ∆S = 0 upon removing the partition, since the gas doesn’t much notice the partition

(which could also be a pretend partition). But just applying our formulae suggests instead

that ∆S = 2NkB ln 2. The indistinguishability is key to the resolution.
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