
140a Lecture 14, 2/26/19

⋆ Week 8 reading: Blundell+Blundell, chapters 21, 22.

• Last time: Z =
∑

α e−βEα , where β ≡ 1/kBT . P (Eα) = e−βEα/Z. U =

−d lnZ/dβ = kBT
2d lnZ/dT . S = kB

∑

i Pi(βEi+lnZ) = (U/T )+kB lnZ. F = U−TS =

−kB lnZ. CV = T ( ∂S
∂T

)V = kBT [2(
∂ lnZ
∂T

)V + T (∂
2 lnZ
∂2T

)V ]. p = −( ∂F
∂V

)T = kBT (
∂ lnZ
∂V

)T .

H = U + pV = kBT [T (
∂ lnZ
∂T

)V + V (∂ lnZ
∂V

)T ]. G = F + pV = kBT [− lnZ + V (∂ lnZ
∂V

)T ].

The single particle partition function is, in terms of the thermal wavelength λth:

Z1 =

∫ ∞

0

e−βh̄2k2/2mkBT g(k)dk ≡ V/λ3
th, λth ≡ h/

√

2πmkBT .

Distinguishable vs indistinguishable particles. If we have N copies of a system that

are distinguishable and non-interacting, then ZN = ZN
1 . But if the N copies are identical

and indistinguishable, then ZN 6= ZN
1 . Mention Gibbs’ paradox and resolution. Gibbs

noticed a paradox, and he also figured out the resolution. Consider free expansion of ideal

gas from Vi to Vf > Vi. Then ∆S = NkB ln(Vf/Vi). Suppose that Vf = 2Vi and that there

were two distinguishable gasses (say nitrogen and oxygen) on the two sides of the partition,

with N molecules of each, and then the partition is removed. Then ∆S = 2NkB ln 2. Now

suppose that the gas on the two sides is the same and indistinguishable. Then we should

find ∆S = 0 upon removing the partition, since the gas doesn’t much notice the partition

(which could also be a pretend partition). But just applying our formulae suggests instead

that ∆S = 2NkB ln 2. The indistinguishability is key to the resolution.

• For N non-interacting particles, we would have ZN,naive = ZN
1 . This is called naive

because it applies only if each of the N particles is distinguishable, whereas molecules are

indistinguishable. Anyway, it leads to lnZN,naive = N ln(V − 3
2
lnβ+ 3

2
ln(2πm/h2)). Then

Snaive = Nk(lnV +
3

2
lnT + σnaive), σnaive =

3

2
(1 + ln(2πmkB/h

2)).

We know from our earlier calculations of ∆S that

S = NkB lnV +
3

2
NkB lnT + f(N)

so Snaive agrees with that, for a specific f(N), and recall that Snaive is in conflict with

the 3rd law since S(0) 6= 0. But Snaive is not really extensive: if we take V → αV and

N → αN we do not get S → αS. This is related to the Gibbs paradox mentioned last

time. Gibbs understood the resolution: molecules are identical.
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• Consider e.g. a system of two two-state systems that are distinguishable we have Z =

1+2e−βǫ+e2βǫ = Z2
1 whereas if they are indistinguishable we have Z = 1+e−βǫ+e2βǫ 6= Z2

1 .

For large N there is a simplification in the indistinguishable case, ZN ≈ ZN
1 /N !. If

the states are sparsely populated, so it is unlikely to have various energy levels occupied

by multiple particles, and N ≫ 1, then ZN ≈ ZN
1 /N !. The condition for this to hold

is n ≪ nQ ≡ 1/λ3
th. This is the ideal gas limit, where the identical gas molecules are

interacting but are widely separated compared to their thermal wavelength. Then ZN ≈

(V/λ3
th)

N/N !.

• This leads to lnZ = N lnV + 3
2N lnT + consts. U = −d lnZ/dβ = 3

2NkBT ,

CV = 3
2
NkBT . F = −kBT lnZ = −kBTN lnV − kB

2
2
NT lnT − kBTxconsts. So p =

−(∂F/∂V )T = NkBT/V , recovering the ideal gas law. H = U + pV = 5
2NkBT . To

compute S, use Stirling’s approximation N ! ≈ (N/e)N to get lnZ ≈ N ln(V e/Nλ3
th)

so F ≈ −NkBT ln(V e/Nλ3
th) so S = (U − F )/T = 5

2
NkB − NkB ln(Nλ3

th/V ). Also

G = H − TS = NkBT ln(Nλ3
th/V ).

• Improved ideal gas expression is thus S = 5
2
NkB − NkB ln(Nλ3

th/V ). The 1/N !

leads to replacing V with V/N inside the ln, which makes S properly extensive.

• Example: diatomic gas. Since E = Etrans + Evib + Erot and each involves de-

coupled, independent sums, get Z = ZtransZvibZrot. As before, Ztrans = V/λ3
th and

Zvib = e−
1
2βh̄ω/(1−e−βh̄ω) and Zrot =

∑∞
J=0(2J+1)e−βh̄2J(J+1)/2I . Then CV = (dUdT )V =

CV,trans + CV,vib + CV,rot, since U = − d
dβ

lnZ = Utrans + Uvib + Urot. This reproduces

the observed behavior of plateaus in CV /NkB ∼ 1
2f : for kBT large enough that the ideal

gas approximation is OK, but kBT < h̄2/2I and h̄ω, get f = 3 from the translation d.o.f.,

the next plateau is for h̄2/2I < kBT < h̄ω, when the vibrational d.o.f. are also excited,

get f = 5. Then, for kBT > h̄ω get f = 7. This was observed before QM, or molecules(!),

were understood; it was a big hint (in retrospect).

• Consider distinguishable vs indistinguishable in the microcanonical description.

S(U,N, ...) = k lnΩ(U,N, ...) ≈ k lnωmax.

Ω(U,N) =
∑

{Ni}

′

ω({Ni}),

where ω({Ni}) is the number of microstates labeled by someNi and the prime is a reminder

that the {Ni} must satisfy
∑

iNi = N and
∑

i Niǫi = U . Continue from here....
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