\star Week 8 reading: Blundell + Blundell, chapters 21, 22.

- Last time: $Z=\sum_{\alpha} e^{-\beta E_{\alpha}}$, where $\beta \equiv 1 / k_{B} T . \quad P\left(E_{\alpha}\right)=e^{-\beta E_{\alpha}} / Z . \quad U=$ $-d \ln Z / d \beta=k_{B} T^{2} d \ln Z / d T . S=k_{B} \sum_{i} P_{i}\left(\beta E_{i}+\ln Z\right)=(U / T)+k_{B} \ln Z . F=U-T S=$ $-k_{B} \ln Z . C_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V}=k_{B} T\left[2\left(\frac{\partial \ln Z}{\partial T}\right)_{V}+T\left(\frac{\partial^{2} \ln Z}{\partial^{2} T}\right)_{V}\right] . p=-\left(\frac{\partial F}{\partial V}\right)_{T}=k_{B} T\left(\frac{\partial \ln Z}{\partial V}\right)_{T}$. $H=U+p V=k_{B} T\left[T\left(\frac{\partial \ln Z}{\partial T}\right)_{V}+V\left(\frac{\partial \ln Z}{\partial V}\right)_{T}\right] . G=F+p V=k_{B} T\left[-\ln Z+V\left(\frac{\partial \ln Z}{\partial V}\right)_{T}\right]$.

The single particle partition function is, in terms of the thermal wavelength $\lambda_{t h}$:

$$
Z_{1}=\int_{0}^{\infty} e^{-\beta \hbar^{2} k^{2} / 2 m k_{B} T} g(k) d k \equiv V / \lambda_{t h}^{3}, \quad \lambda_{t h} \equiv h / \sqrt{2 \pi m k_{B} T}
$$

Distinguishable vs indistinguishable particles. If we have N copies of a system that are distinguishable and non-interacting, then $Z_{N}=Z_{1}^{N}$. But if the N copies are identical and indistinguishable, then $Z_{N} \neq Z_{1}^{N}$. Mention Gibbs' paradox and resolution. Gibbs noticed a paradox, and he also figured out the resolution. Consider free expansion of ideal gas from V_{i} to $V_{f}>V_{i}$. Then $\Delta S=N k_{B} \ln \left(V_{f} / V_{i}\right)$. Suppose that $V_{f}=2 V_{i}$ and that there were two distinguishable gasses (say nitrogen and oxygen) on the two sides of the partition, with N molecules of each, and then the partition is removed. Then $\Delta S=2 N k_{B} \ln 2$. Now suppose that the gas on the two sides is the same and indistinguishable. Then we should find $\Delta S=0$ upon removing the partition, since the gas doesn't much notice the partition (which could also be a pretend partition). But just applying our formulae suggests instead that $\Delta S=2 N k_{B} \ln 2$. The indistinguishability is key to the resolution.

- For N non-interacting particles, we would have $Z_{N, n a i v e}=Z_{1}^{N}$. This is called naive because it applies only if each of the N particles is distinguishable, whereas molecules are indistinguishable. Anyway, it leads to $\ln Z_{N, \text { naive }}=N \ln \left(V-\frac{3}{2} \ln \beta+\frac{3}{2} \ln \left(2 \pi m / h^{2}\right)\right)$. Then

$$
S_{\text {naive }}=N k\left(\ln V+\frac{3}{2} \ln T+\sigma_{\text {naive }}\right), \quad \sigma_{\text {naive }}=\frac{3}{2}\left(1+\ln \left(2 \pi m k_{B} / h^{2}\right)\right)
$$

We know from our earlier calculations of ΔS that

$$
S=N k_{B} \ln V+\frac{3}{2} N k_{B} \ln T+f(N)
$$

so $S_{\text {naive }}$ agrees with that, for a specific $f(N)$, and recall that $S_{\text {naive }}$ is in conflict with the 3rd law since $S(0) \neq 0$. But $S_{\text {naive }}$ is not really extensive: if we take $V \rightarrow \alpha V$ and $N \rightarrow \alpha N$ we do not get $S \rightarrow \alpha S$. This is related to the Gibbs paradox mentioned last time. Gibbs understood the resolution: molecules are identical.

- Consider e.g. a system of two two-state systems that are distinguishable we have $Z=$ $1+2 e^{-\beta \epsilon}+e^{2 \beta \epsilon}=Z_{1}^{2}$ whereas if they are indistinguishable we have $Z=1+e^{-\beta \epsilon}+e^{2 \beta \epsilon} \neq Z_{1}^{2}$.

For large N there is a simplification in the indistinguishable case, $Z_{N} \approx Z_{1}^{N} / N$!. If the states are sparsely populated, so it is unlikely to have various energy levels occupied by multiple particles, and $N \gg 1$, then $Z_{N} \approx Z_{1}^{N} / N!$. The condition for this to hold is $n \ll n_{Q} \equiv 1 / \lambda_{t h}^{3}$. This is the ideal gas limit, where the identical gas molecules are interacting but are widely separated compared to their thermal wavelength. Then $Z_{N} \approx$ $\left(V / \lambda_{t h}^{3}\right)^{N} / N!$.

- This leads to $\ln Z=N \ln V+\frac{3}{2} N \ln T+$ consts. $U=-d \ln Z / d \beta=\frac{3}{2} N k_{B} T$, $C_{V}=\frac{3}{2} N k_{B} T . F=-k_{B} T \ln Z=-k_{B} T N \ln V-k_{B} \frac{2}{2} N T \ln T-k_{B} T x c o n s t s$. So $p=$ $-(\partial F / \partial V)_{T}=N k_{B} T / V$, recovering the ideal gas law. $H=U+p V=\frac{5}{2} N k_{B} T$. To compute S, use Stirling's approximation $N!\approx(N / e)^{N}$ to get $\ln Z \approx N \ln \left(V e / N \lambda_{t h}^{3}\right)$ so $F \approx-N k_{B} T \ln \left(V e / N \lambda_{t h}^{3}\right)$ so $S=(U-F) / T=\frac{5}{2} N k_{B}-N k_{B} \ln \left(N \lambda_{t h}^{3} / V\right)$. Also $G=H-T S=N k_{B} T \ln \left(N \lambda_{t h}^{3} / V\right)$.
- Improved ideal gas expression is thus $S=\frac{5}{2} N k_{B}-N k_{B} \ln \left(N \lambda_{t h}^{3} / V\right)$. The $1 / N$! leads to replacing V with V / N inside the \ln, which makes S properly extensive.
- Example: diatomic gas. Since $E=E_{t r a n s}+E_{v i b}+E_{\text {rot }}$ and each involves decoupled, independent sums, get $Z=Z_{\text {trans }} Z_{v i b} Z_{\text {rot }}$. As before, $Z_{\text {trans }}=V / \lambda_{t h}^{3}$ and $Z_{v i b}=e^{-\frac{1}{2} \beta \hbar \omega} /\left(1-e^{-\beta \hbar \omega}\right)$ and $Z_{r o t}=\sum_{J=0}^{\infty}(2 J+1) e^{-\beta \hbar^{2} J(J+1) / 2 I}$. Then $C_{V}=\left(\frac{d U}{d T}\right)_{V}=$ $C_{V, \text { trans }}+C_{V, v i b}+C_{V, r o t}$, since $U=-\frac{d}{d \beta} \ln Z=U_{\text {trans }}+U_{v i b}+U_{r o t}$. This reproduces the observed behavior of plateaus in $C_{V} / N k_{B} \sim \frac{1}{2} f$: for $k_{B} T$ large enough that the ideal gas approximation is OK, but $k_{B} T<\hbar^{2} / 2 I$ and $\hbar \omega$, get $f=3$ from the translation d.o.f., the next plateau is for $\hbar^{2} / 2 I<k_{B} T<\hbar \omega$, when the vibrational d.o.f. are also excited, get $f=5$. Then, for $k_{B} T>\hbar \omega$ get $f=7$. This was observed before QM , or molecules(!), were understood; it was a big hint (in retrospect).
- Consider distinguishable vs indistinguishable in the microcanonical description.

$$
\begin{gathered}
S(U, N, \ldots)=k \ln \Omega(U, N, \ldots) \approx k \ln \omega_{\max } \\
\Omega(U, N)=\sum_{\left\{N_{i}\right\}}{ }^{\prime} \omega\left(\left\{N_{i}\right\}\right)
\end{gathered}
$$

where $\omega\left(\left\{N_{i}\right\}\right)$ is the number of microstates labeled by some N_{i} and the prime is a reminder that the $\left\{N_{i}\right\}$ must satisfy $\sum_{i} N_{i}=N$ and $\sum_{i} N_{i} \epsilon_{i}=U$. Continue from here....

