
140a Lecture 15, 2/28/19

⋆ Week 8 reading: Blundell+Blundell, chapters 21, 22, 29

• Continue where we left off last time. Consider distinguishable vs indistinguishable

in the microcanonical description.

S(U,N, ...) = k lnΩ(U,N, ...) ≈ k lnωmax.

Ω(U,N) =
∑

{Ni}

′

ω({Ni}),

where ω({Ni}) is the number of microstates labeled by someNi and the prime is a reminder

that the {Ni} must satisfy
∑

iNi = N and
∑

i Niǫi = U .

For distinguishABLE particles, the number of states states with a given set of {Ni} is

ω({Ni}) = N !
n∏

i=1

gNi

i

Ni!
,

here i labels the energy levels, or cells, and gi is the number of states with energy ǫi (or

states in that cell). This is the number of ways of putting Ni out of the N particles in cell

i. But Gibbs tells us to get rid of the N !.

ω({Ni})M.B. =
n∏

i=1

gNi

i

Ni!
.

Now let’s briefly discuss QM and identical particles. For identical particles, we should

replace the configuration number

N !
∏

i

1

Ni!
→ 1,

since they different orderings of the particles are now meaningless. But we’re not finished!

We also need to replace the
∏

i g
Ni

i factor with something more appropriate, and that

depends on whether the particles are bosons or fermions. Discuss the answers:

ω({Ni})B.E. =
∏

i

(Ni + gi − 1)!

Ni!(gi − 1)!
bosons

ω({Ni})F.D. =
∏

i

gi!

Ni!(gi −Ni)!
fermions.
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The M.B., B.E., and F.D. cases all agree in the classical limit. This is the justification for

studying the M.B. distribution: it’s physically wrong, but it’s a bit simpler and it gives

approximately right answers in some appropriate limit.

• Next topic: the chemical potential, which applies when our system does not have a

fixed N , but rather than exchange N with an external reservoir, e.g. for an open system.

Applies in chemistry because molecules can combine to form other molecules via chemical

reactions, so molecule numbers can change. The idea is to consider the change dU in the

internal energy when dN 6= 0, and there is a new term: dU = TdS − pdV + µdN , so

µ = (∂U/∂N)S,V . Let’s switch to holding T instead of S fixed, using F = U − TS or

G = U + pV − TS: µ = (∂F/∂N)V,T or µ = (∂G/∂N)p,T .

• dS = T−1(dU + pdV − µdN) so T−1 = (∂S/∂U)N,V , and p/T = (∂S/∂V )N,U ,

and (∂S/∂N)U,V = −µ/N . Let’s now reconsider, including the chemical potential, the

2nd law and how two subsystems in contact approach thermal equilibrium. E.g. dS =

(∂U1
S1)N,V dU1+(∂U2

S2)N,V dU2 with dU1 = −dU2 = dU gives dS = (−T−1
1 +T−1

2 )dU ≥ 0,

which implies that energy flows from the hotter to the colder object. Likewise, with particle

exchange, get dS = (µ1T
−1
1 − µ2T

−1
2 )dN ≥ 0 where dN is the gain in particle number by

system 2. Taking e.g. T1 = T2 see that particles flow from 1 to 2 if µ1 > µ2.

• For the ideal gas we saw that F = NkBT (ln(Nλ3
th/V ) − 1) so µ = (∂F/∂N)V,T =

kBT ln(Nλ3
th/V ). Also G = F + pV = Nµ.

• Grand partition function: imagine that our small system, of energy ǫ and particle

number N , is in contact with a huge reservoir with internal energy U − ǫ and particle

number N −N , and consider the number of states of the combined system plus reservoir,

coming from the number of states in the reservoir. Taylor expand S(U − ǫ,N − N) ≈

S(U,N ) − (ǫ − µN)/T and thus P (ǫ, N) ∝ eS(U−ǫ),N−N)/kB ∝ eβ(µN−ǫ). So define the

grand partition function as Z(T, µ, V ) ≡
∑

i e
β(µNi−Ei). Get N = kBT (∂ lnZ/∂µ)β,V .

U = −(∂ lnZ/∂β)µ,V + µN . S = −kB
∑

i Pi lnPi = T−1(U − µN + kBT lnZ). Taking

ΦG ≡ −kBT lnZ, show that ΦG = F −µN and S = −(∂ΦG)/∂T )V,µ, p = −(∂ΦG/∂V )T,µ,

N = −(∂ΦG/∂µ)T,V .
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