\star Week 9 reading: Blundell+Blundell, chapters 29, 23, 24

- Continue where we left off last time. Grand partition function: imagine that our small system, of energy ϵ and particle number N, is in contact with a huge reservoir with internal energy $U-\epsilon$ and particle number $\mathcal{N}-N$, and consider the number of states of the combined system plus reservoir, coming from the number of states in the reservoir. Taylor expand $S(U-\epsilon, \mathcal{N}-N) \approx S(U, \mathcal{N})-(\epsilon-\mu N) / T$ and thus $P(\epsilon, N) \propto e^{S(U-\epsilon, \mathcal{N}-N) / k_{B}} \propto$ $e^{\beta(\mu N-\epsilon)}$. So define the grand partition function as $\mathcal{Z}(T, \mu, V) \equiv \sum_{i} e^{\beta\left(\mu N_{i}-E_{i}\right)}$. Get $N=$ $k_{B} T(\partial \ln \mathcal{Z} / \partial \mu)_{\beta, V} . U=-(\partial \ln \mathcal{Z} / \partial \beta)_{\mu, V}+\mu N . S=-k_{B} \sum_{i} P_{i} \ln P_{i}=T^{-1}(U-\mu N+$ $\left.k_{B} T \ln \mathcal{Z}\right)$. Taking $\Phi_{G} \equiv-k_{B} T \ln \mathcal{Z}$, show that $\Phi_{G}=F-\mu N$ and $\left.S=-\left(\partial \Phi_{G}\right) / \partial T\right)_{V, \mu}$, $p=-\left(\partial \Phi_{G} / \partial V\right)_{T, \mu}, N=-\left(\partial \Phi_{G} / \partial \mu\right)_{T, V}$.
- Next topic: Bose-Einstein and Fermi-Dirac distributions. Recall from your QM class that the wavefunction for two identical particles satisfies $\psi\left(\vec{r}_{1}, \vec{r}_{2}\right)= \pm \phi\left(\vec{r}_{2}, \vec{r}_{1}\right)$, where it is $\mathrm{a}+\operatorname{sign}$ for identical bosons (e.g. photons) and $\mathrm{a}-\operatorname{sign}$ for identical fermions (e.g. electrons). Consider e.g. a 2-state system. For two distinguishable particles (Fred and Jeremiah were the names chosen in class) there are four possible states which we can write as $|0\rangle_{F}|0\rangle_{J},|0\rangle_{F}|1\rangle_{J},|1\rangle_{F}|0\rangle_{J},|1\rangle_{F}|1\rangle_{J}$. If they are indistinguishable, we drop the name tags and classically we have the three states $|0\rangle|0\rangle,|0\rangle|1\rangle,|1\rangle|1\rangle$. For indistinguishable bosons there are indeed three states but the wavefunctions are actually $|0\rangle|0\rangle$, $\frac{1}{\sqrt{2}}(|0\rangle|1\rangle+|1\rangle|0\rangle),|1\rangle|1\rangle$. For indistinguishable fermions there is actually only one state, with wavefunction $\frac{1}{\sqrt{2}}(|0\rangle|1\rangle-|1\rangle|0\rangle)$.
- Consider e.g. a 1 -state system, where the one state has energy E. Consider the grand partition function $\mathcal{Z}=\sum_{n} e^{n \beta(\mu-E)}$, where n is the occupation number. Then $\langle n\rangle=-k_{B} T \partial \ln \mathcal{Z} / \partial E$.

For Fermions, the only allowed values in \sum_{n} are $n=0,1$, so $\mathcal{Z}_{\text {fermions }}=1+e^{\beta(\mu-E)}$. For bosons we sum the geometric series over all $n=0, \ldots \infty$ to get $\mathcal{Z}_{\text {bosons }}=(1-$ $\left.e^{-\beta(\mu-E)}\right)^{-1}$. Both can be written as giving $\ln \mathcal{Z}_{F, B}= \pm \ln \left(1 \pm e^{\beta(\mu-E)}\right)$. Get $\langle n\rangle=$ $\left(e^{\beta(E-\mu)} \pm 1\right)^{-1}$. The distribution function is the mean occupation of a single particle state with energy E and is given by $f_{F D}(E)=\left(e^{\beta(E-\mu)}+1\right)^{-1}$ and $f_{B E}(E)=\left(e^{\beta(E-\mu)}-1\right)^{-1}$.

