
140a Lecture 16, 3/5/19

⋆ Week 9 reading: Blundell+Blundell, chapters 29, 23, 24

• Continue where we left off last time. Grand partition function: imagine that our

small system, of energy ǫ and particle number N , is in contact with a huge reservoir with

internal energy U−ǫ and particle number N −N , and consider the number of states of the

combined system plus reservoir, coming from the number of states in the reservoir. Taylor

expand S(U − ǫ,N −N) ≈ S(U,N )− (ǫ− µN)/T and thus P (ǫ, N) ∝ eS(U−ǫ,N−N)/kB ∝

eβ(µN−ǫ). So define the grand partition function as Z(T, µ, V ) ≡
∑

i e
β(µNi−Ei). Get N =

kBT (∂ lnZ/∂µ)β,V . U = −(∂ lnZ/∂β)µ,V + µN . S = −kB
∑

i Pi lnPi = T−1(U − µN +

kBT lnZ). Taking ΦG ≡ −kBT lnZ, show that ΦG = F − µN and S = −(∂ΦG)/∂T )V,µ,

p = −(∂ΦG/∂V )T,µ, N = −(∂ΦG/∂µ)T,V .

• Next topic: Bose-Einstein and Fermi-Dirac distributions. Recall from your QM class

that the wavefunction for two identical particles satisfies ψ(~r1, ~r2) = ±φ(~r2, ~r1), where it

is a + sign for identical bosons (e.g. photons) and a − sign for identical fermions (e.g.

electrons). Consider e.g. a 2-state system. For two distinguishable particles (Fred and

Jeremiah were the names chosen in class) there are four possible states which we can

write as |0〉F |0〉J , |0〉F |1〉J , |1〉F |0〉J , |1〉F |1〉J . If they are indistinguishable, we drop

the name tags and classically we have the three states |0〉|0〉, |0〉|1〉, |1〉|1〉. For indistin-

guishable bosons there are indeed three states but the wavefunctions are actually |0〉|0〉,
1√
2
(|0〉|1〉+ |1〉|0〉), |1〉|1〉. For indistinguishable fermions there is actually only one state,

with wavefunction 1√
2
(|0〉|1〉 − |1〉|0〉).

• Consider e.g. a 1-state system, where the one state has energy E. Consider the

grand partition function Z =
∑

n e
nβ(µ−E), where n is the occupation number. Then

〈n〉 = −kBT∂ lnZ/∂E.

For Fermions, the only allowed values in
∑

n are n = 0, 1, so Zfermions = 1+eβ(µ−E).

For bosons we sum the geometric series over all n = 0, . . .∞ to get Zbosons = (1 −

e−β(µ−E))−1. Both can be written as giving lnZF,B = ± ln(1 ± eβ(µ−E)). Get 〈n〉 =

(eβ(E−µ)±1)−1. The distribution function is the mean occupation of a single particle state

with energy E and is given by fFD(E) = (eβ(E−µ) +1)−1 and fBE(E) = (eβ(E−µ) − 1)−1.
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