140a Lecture 16, 3/5/19

* Week 9 reading: Blundell+Blundell, chapters 29, 23, 24

• Continue where we left off last time. Grand partition function: imagine that our small system, of energy ϵ and particle number N, is in contact with a huge reservoir with internal energy $U - \epsilon$ and particle number $\mathcal{N} - N$, and consider the number of states of the combined system plus reservoir, coming from the number of states in the reservoir. Taylor expand $S(U - \epsilon, \mathcal{N} - N) \approx S(U, \mathcal{N}) - (\epsilon - \mu N)/T$ and thus $P(\epsilon, N) \propto e^{S(U - \epsilon, \mathcal{N} - N)/k_B} \propto e^{\beta(\mu N - \epsilon)}$. So define the grand partition function as $\mathcal{Z}(T, \mu, V) \equiv \sum_i e^{\beta(\mu N_i - E_i)}$. Get $N = k_B T (\partial \ln \mathcal{Z}/\partial \mu)_{\beta,V}$. $U = -(\partial \ln \mathcal{Z}/\partial \beta)_{\mu,V} + \mu N$. $S = -k_B \sum_i P_i \ln P_i = T^{-1}(U - \mu N + k_B T \ln \mathcal{Z})$. Taking $\Phi_G \equiv -k_B T \ln \mathcal{Z}$, show that $\Phi_G = F - \mu N$ and $S = -(\partial \Phi_G)/\partial T)_{V,\mu}$, $p = -(\partial \Phi_G/\partial V)_{T,\mu}$, $N = -(\partial \Phi_G/\partial \mu)_{T,V}$.

• Next topic: Bose-Einstein and Fermi-Dirac distributions. Recall from your QM class that the wavefunction for two identical particles satisfies $\psi(\vec{r}_1, \vec{r}_2) = \pm \phi(\vec{r}_2, \vec{r}_1)$, where it is a + sign for identical bosons (e.g. photons) and a – sign for identical fermions (e.g. electrons). Consider e.g. a 2-state system. For two distinguishable particles (Fred and Jeremiah were the names chosen in class) there are four possible states which we can write as $|0\rangle_F |0\rangle_J$, $|0\rangle_F |1\rangle_J$, $|1\rangle_F |0\rangle_J$, $|1\rangle_F |1\rangle_J$. If they are indistinguishable, we drop the name tags and classically we have the three states $|0\rangle |0\rangle$, $|0\rangle |1\rangle$, $|1\rangle |1\rangle$. For indistinguishable bosons there are indeed three states but the wavefunctions are actually $|0\rangle |0\rangle$, $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle + |1\rangle |0\rangle)$, $|1\rangle |1\rangle$. For indistinguishable fermions there is actually only one state, with wavefunction $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle - |1\rangle |0\rangle$).

• Consider e.g. a 1-state system, where the one state has energy E. Consider the grand partition function $\mathcal{Z} = \sum_{n} e^{n\beta(\mu-E)}$, where n is the occupation number. Then $\langle n \rangle = -k_B T \partial \ln \mathcal{Z} / \partial E$.

For Fermions, the only allowed values in \sum_{n} are n = 0, 1, so $\mathcal{Z}_{fermions} = 1 + e^{\beta(\mu - E)}$. For bosons we sum the geometric series over all $n = 0, \ldots \infty$ to get $\mathcal{Z}_{bosons} = (1 - e^{-\beta(\mu - E)})^{-1}$. Both can be written as giving $\ln \mathcal{Z}_{F,B} = \pm \ln(1 \pm e^{\beta(\mu - E)})$. Get $\langle n \rangle = (e^{\beta(E-\mu)} \pm 1)^{-1}$. The distribution function is the mean occupation of a single particle state with energy E and is given by $f_{FD}(E) = (e^{\beta(E-\mu)} + 1)^{-1}$ and $f_{BE}(E) = (e^{\beta(E-\mu)} - 1)^{-1}$.