
140a Lecture 18, 3/12/19

⋆ Week 10 reading: Blundell+Blundell, chapters 23, 24, 25, 28.1, 28.2, 28.3.

• Continue where we left off last time, considering a thermal collection of photons in a

box. We saw that the wave counting gives 2V d3~k/(2π)3 (where the 2 is for polarizations)

and ω = ck, photons have energy E = h̄ω and ~p = h̄k, with ω = ck. The energy

density of a gas of photons of frequency ω is u = U/V = nh̄ω where n = N/V is the

photon density. The pressure of a gas of photons is p = u/3. The number of photons

hitting a unit area of the container wall per second is Φ = 1
4nc and thus the power

incident on the wall per unit area is P = h̄ωΦ = 1
4uc. The thermodynamic relations

(∂U/∂V )T = T (∂S/∂V )T − p = T (∂p/∂T )V − p becomes u = 1
3 (T (∂u/∂T )V − u) which

leads to 4dT/T = du/u and thus P = 1
4uc = σT 4. Let’s now show how to get this, and

derive the value of the Stefan-Boltzmann constant σ.

Each Fourier mode of the light in the box is like a SHO, and there is a factor of two

from the two polarizations. As we discussed earlier, the number of modes in a box of

volume V is V d3k
(2π)3 . The total internal energy is then

U = 2V

∫

d3k

(2π)3
h̄ck( 12 +

1

eβh̄ω − 1
) →

4V σ

c
T 4 with σ =

π2k4B
60c2h̄3 .

The 1
2 is the vacuum energy of the SHO, which we won’t worry about here (mention

briefly the cosmological constant). The blackbody distribution u(ω) = h̄ω3/π2c3(eβh̄ω−1)

reproduces the classical equipartition theorem answer for βh̄ω ≪ 1, and the exponential

in the denominator cures the ultraviolet catastrophe of the classical equipartition theorem

for large ω: recall from your QM classes that this was how Planck first introduced h̄ and

he wrote down the answer for u(ω) by fitting, without understanding that light comes in

quantized photons. That understanding came later, from Einstein who first wrote down

E = h̄ω to explain both this and especially the photoelectric effect.

The cosmic microwave background radiation is the afterglow from the early universe,

and is a blackbody spectrum with temperature T ≈ 3K (with tiny temperature anisotropies

measured in different parts of the sky by cosmology experiments).

• The above description was in terms of the canonical ensemble for the SHO energy

levels. Alternatively and equivalently, we can get it from the grand canonical ensemble for

occupation number n of the energy E = h̄ω. We saw before that identical bosons in this

description have 〈n〉 = (eβ(E−µ)−1)−1, and this matches the above if we set µ = 0. In terms

of the microcanonical ensemble, we saw that µ is related to the Lagrange multiplier that
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enforces the particle number conservation law
∑

i ni = N , but there is no such constraint

on the number of photons, which is why we can set µ = 0. Recall thatG = F+pV = µN , so

µ = 0 gives F = −pV = −kBT lnZ = −kBT2V (4π)(2πh̄)−3
∫

∞

0
p2dp ln(1 − e−cp/kBT ) =

−U/3 where p2dp = d(p3/3) was integrated by parts to get the same integral for U as

above. This gives yet another way to see the 1/3 factor that was obtained in several ways

last lecture. Also, S = (U − F )/T = 4
3 (U/T ) ∝ V T 3 and CV = T ( ∂S∂T )V = 3S.

• Continue along these lines for relativistic gases. E =
√

c2p2 + (mc2)2. In the

ultrarelativistic limit, E ≈ cp. The single particle partition function is then

Z1 = V

∫

d3~p

(2πh̄)3
e−βcp =

V

2π2
(
kBT

h̄c
)3

∫

∞

0

e−xx2dx =
V

π2
(
kBT

h̄c
)3.

Recall that in the non-relativistic case we found Z1 ∝ V T 3/2. Write Z1 = V/Λ3 in the

relativistic case, with Λ ∼ 1/T .

For low-density the partition function for N indistinguishable relativistic particles is

ZN = ZN
1 /N ! and thus lnZN ≈ N lnV + 3N lnT + const. So U = − d

dβ
lnZ = 3NkBT

(vs 3
2NkBT in the non-relativistic case) and CV = 3NkB and F = −kBT lnZN gives

p = −( ∂F∂V )T = NkBT/V (same ideal gas law). So we again get p = u/3 with u = U/V .

Find the entropy S = (U − T )/T = NkB(4− ln(nΛ3)).
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