140a Lecture 18, 3/12/19

* Week 10 reading: Blundell+Blundell, chapters 23, 24, 25, 28.1, 28.2, 28.3.
- Continue where we left off last time, considering a thermal collection of photons in a box. We saw that the wave counting gives $2 V d^{3} \vec{k} /(2 \pi)^{3}$ (where the 2 is for polarizations) and $\omega=c k$, photons have energy $E=\hbar \omega$ and $\vec{p}=\hbar k$, with $\omega=c k$. The energy density of a gas of photons of frequency ω is $u=U / V=n \hbar \omega$ where $n=N / V$ is the photon density. The pressure of a gas of photons is $p=u / 3$. The number of photons hitting a unit area of the container wall per second is $\Phi=\frac{1}{4} n c$ and thus the power incident on the wall per unit area is $P=\hbar \omega \Phi=\frac{1}{4} u c$. The thermodynamic relations $(\partial U / \partial V)_{T}=T(\partial S / \partial V)_{T}-p=T(\partial p / \partial T)_{V}-p$ becomes $u=\frac{1}{3}\left(T(\partial u / \partial T)_{V}-u\right)$ which leads to $4 d T / T=d u / u$ and thus $P=\frac{1}{4} u c=\sigma T^{4}$. Let's now show how to get this, and derive the value of the Stefan-Boltzmann constant σ.

Each Fourier mode of the light in the box is like a SHO, and there is a factor of two from the two polarizations. As we discussed earlier, the number of modes in a box of volume V is $V \frac{d^{3} k}{(2 \pi)^{3}}$. The total internal energy is then

$$
U=2 V \int \frac{d^{3} k}{(2 \pi)^{3}} \hbar c k\left(\frac{1}{2}+\frac{1}{e^{\beta \hbar \omega}-1}\right) \rightarrow \frac{4 V \sigma}{c} T^{4} \quad \text { with } \quad \sigma=\frac{\pi^{2} k_{B}^{4}}{60 c^{2} \hbar^{3}}
$$

The $\frac{1}{2}$ is the vacuum energy of the SHO, which we won't worry about here (mention briefly the cosmological constant). The blackbody distribution $u(\omega)=\hbar \omega^{3} / \pi^{2} c^{3}\left(e^{\beta \hbar \omega}-1\right)$ reproduces the classical equipartition theorem answer for $\beta \hbar \omega \ll 1$, and the exponential in the denominator cures the ultraviolet catastrophe of the classical equipartition theorem for large ω : recall from your QM classes that this was how Planck first introduced \hbar and he wrote down the answer for $u(\omega)$ by fitting, without understanding that light comes in quantized photons. That understanding came later, from Einstein who first wrote down $E=\hbar \omega$ to explain both this and especially the photoelectric effect.

The cosmic microwave background radiation is the afterglow from the early universe, and is a blackbody spectrum with temperature $T \approx 3 K$ (with tiny temperature anisotropies measured in different parts of the sky by cosmology experiments).

- The above description was in terms of the canonical ensemble for the SHO energy levels. Alternatively and equivalently, we can get it from the grand canonical ensemble for occupation number n of the energy $E=\hbar \omega$. We saw before that identical bosons in this description have $\langle n\rangle=\left(e^{\beta(E-\mu)}-1\right)^{-1}$, and this matches the above if we set $\mu=0$. In terms of the microcanonical ensemble, we saw that μ is related to the Lagrange multiplier that
enforces the particle number conservation law $\sum_{i} n_{i}=N$, but there is no such constraint on the number of photons, which is why we can set $\mu=0$. Recall that $G=F+p V=\mu N$, so $\mu=0$ gives $F=-p V=-k_{B} T \ln Z=-k_{B} T 2 V(4 \pi)(2 \pi \hbar)^{-3} \int_{0}^{\infty} p^{2} d p \ln \left(1-e^{-c p / k_{B} T}\right)=$ $-U / 3$ where $p^{2} d p=d\left(p^{3} / 3\right)$ was integrated by parts to get the same integral for U as above. This gives yet another way to see the $1 / 3$ factor that was obtained in several ways last lecture. Also, $S=(U-F) / T=\frac{4}{3}(U / T) \propto V T^{3}$ and $C_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V}=3 S$.
- Continue along these lines for relativistic gases. $E=\sqrt{c^{2} p^{2}+\left(m c^{2}\right)^{2}}$. In the ultrarelativistic limit, $E \approx c p$. The single particle partition function is then

$$
Z_{1}=V \int \frac{d^{3} \vec{p}}{(2 \pi \hbar)^{3}} e^{-\beta c p}=\frac{V}{2 \pi^{2}}\left(\frac{k_{B} T}{\hbar c}\right)^{3} \int_{0}^{\infty} e^{-x} x^{2} d x=\frac{V}{\pi^{2}}\left(\frac{k_{B} T}{\hbar c}\right)^{3}
$$

Recall that in the non-relativistic case we found $Z_{1} \propto V T^{3 / 2}$. Write $Z_{1}=V / \Lambda^{3}$ in the relativistic case, with $\Lambda \sim 1 / T$.

For low-density the partition function for N indistinguishable relativistic particles is $Z_{N}=Z_{1}^{N} / N!$ and thus $\ln Z_{N} \approx N \ln V+3 N \ln T+$ const. So $U=-\frac{d}{d \beta} \ln Z=3 N k_{B} T$ (vs $\frac{3}{2} N k_{B} T$ in the non-relativistic case) and $C_{V}=3 N k_{B}$ and $F=-k_{B} T \ln Z_{N}$ gives $p=-\left(\frac{\partial F}{\partial V}\right)_{T}=N k_{B} T / V$ (same ideal gas law). So we again get $p=u / 3$ with $u=U / V$. Find the entropy $S=(U-T) / T=N k_{B}\left(4-\ln \left(n \Lambda^{3}\right)\right)$.

