
140a Lecture 2, 1/10/19

⋆ Week 1 reading: Blundell+Blundell, chapters 1,2,3,4.

• Last time: some thermodynamic variables: pressure p, volume V , temperature T .

The 0-th law of thermodynamics is that one can define temperature as a property of a

system. Equilibrium requires φA(PA, VA) = φB(PB, VB) = φC(PC , VC) and we can define

φ(p, V ) to be the temperature. Generally, equilibrium occurs on a 2d surface in the 3d space

of (P, V, T ). Bring in model for water’s interesting equilibrium phase surface. Example:

the ideal gas law, PV = nRT = nkBT , in the dilute limit (as in the model).

• Units: recall that pV has units of energy. We will see that /dWreversible = −pdV ,

consistent with the units. Also heat /dQ has units of energy.

• Temperature T will always in this class be described in units of Kelvin, which is such

that T ≥ 0 (we will mention some bizarre contrary cases). In these units, kBT has units of

energy. E.g. room temperature is Troom ≈ 300K and kBTroom ≈ (1/40)eV ≈ 4× 10−21J .

kB is not a fundamental constant, but is just a conversion factor because we choose to

measure temperature with a particular set of units, rather than directly in the same units

as energy. The reason that kBT is so small is because that is ∼ the kinetic energy of a

single molecule in thermal equilibrium. So to get to macroscopic energies from everyday

life we have to multiply it by something like NA ≈ 6.02 × 1023. In chem class, usually

write n = N/NA as number of mols and R = kBNA, so nR = NkB; we’ll use N and kB.

• Extensive vs intensive variables: a variable is extensive if its value for a whole

system is the sum of the values for subsystems; an intensive variable is the same for the

subsystems and the whole system. So extensive variables include volume V , mass M ,

number of molecules N . Intensive variables include pressure p, and temperature T .

• A thermodynamic system can be described by the state variables (p, V, T ). They

just depend on the state of the system, not the history of how it got to that state. A

thermodynamic system is in thermodynamic equilibrium if these variables are on a surface

where some f(p, V, T ) = 0. For example, for an ideal gas, it is f = pV −NkBT = 0. Note

that the two terms in f here have the same units (energy) and are extensive; whenever

you write something, you should check that the units make sense and that the extensive vs

intensive property makes sense (e.g. that all terms added together have the same scaling

with the size of the system). Look at the model of (p, V, T ) for examples, e.g. water,

and note that different systems differ in many regions, and have interesting phases (liquid,

solid, etc) – it is only in the dilute limit that all behave approximately like an ideal gas.

1



• Consider N particles which can each have two energy states, say E = 0 and E = ǫ.

Q: How many configurations Ω of the whole system have E = rǫ? A: Ω(E = rǫ) =

(

N
r

)

=

N !/r!(N − r)!. Remember, Ω is a number (so it is dimensionless).

• If a subsystem has energy E1 and number of states Ω1(E1) and another subsystem

has energy E2 and number of states Ω2(E2), the whole system, including both, has en-

ergy E = E1 + E2 (energy is extensive) and Ω(E) ≈ Ω1(E1)Ω2(E2) (the error becomes

negligible for large subsystems when the interactions are negligible, or the relation is ex-

act for decoupled subsystems). So lnΩ is extensive. Boltzmann: S = kB lnΩ is the stat

mech description of entropy; we will discuss this much more throughout the class – just

mentioning it now as a preview.

• Statistical definition of temperature: the two subsystems are in equilibrium if

Ω is maximized. Reason: assume that all microstates are equally likely, so the most

likely configuration once equilibrium is achieved is that with the most possible states.

Transfer energy between subsystems 1 and 2 until Ω1(E1)Ω2(E2) is maximized, with

dE1 = −dE2 since energy is conserved. Write d
dE1

ln(Ω1(E1)Ω2(E − E1)) = 0 to max-

imize, so d lnΩ1/dE1 = d lnΩ2/dE2 for equilibrium. Note that d lnΩ/dE is intensive

(since it is the ratio of two extensive variables) and has units of 1/energy. In fact,

d lnΩ(E)

dE
=

1

kBT
≡ β a key equation!

Micro-canonical ensemble: a collection of copies of the system all with the same energy,

and then we obtain temperature as above.

• Canonical ensemble: put a small system in thermal contact with a large heat bath,

at temperature T . Energy can be exchanged with the heat bath, so the small system does

not have a fixed ǫ but instead has a probability distribution P (ǫ) ∝ Ω(E−ǫ)×1, associated

with the number of states of the heat bath (the ×1 is because the system itself is small,

without inner possibilities, so we assume for the moment that it has non-degenerate states

– this can, and should, be modified as appropriate). By a Taylor series in small ǫ find

Ω(E − ǫ) ≈ Ω(E)e−βǫ, so

P (ǫ) = Z−1e−βǫ, where Z(β) ≡
∑

ǫ

e−βǫ.

Z(β) is the partition function, a key quantity in statistical mechanics.
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