
140a Lecture 4, 1/17/19

⋆ Week 2 reading: Blundell+Blundell, chapters 5,6. Then skip to chapter 11.

• Last time: Canonical P (E) ∝ e−E/kBT for the case of the MB distribution gives

P (~v) = e−m~v2/2kBT gives 〈~v2〉 = 3kBT/m and pV = NkBT . For an ideal monatomic gas,

we get pV = 2

3
U where U is the total internal energy, which is also nice to write (as we

will discuss today) as U = CV T with CV = 3

2
NkB.

• Highly recommended for this class: Feynman lectures on physics, volume

1, chapters 38-46.. They are free online, and I added a link on the webpage.

• Gas law for photons (see Feynman lecture 39). We saw last time that p = N
V 〈pzvz〉

(recall the 2s) for a wall (or a pretend wall) with normal in the z direction. Since p is a

rotational scalar, this is better written as p = N
V

1

3
〈~v · ~p〉. This formula works even for light

(a gas of photons) in thermal equilibrium (blackbody spectrum), even though photons are

massless (recall their ~p = h̄~k and E = h̄ω). Recall from relativity that ~v = c2~p/E, so

~v · ~p = c2p2/E and for photons E = cp so ~v · ~p = E so we find that photons have pV = U/3

for photons. Later (B2 chapter 23), we will see that photons have U = V (4σSB/c)T
4 where

σSB is the Stefan-Boltzmann constant, which we will derive from statistical mechanics and

quantum mechanics (σSB = π2k4B/60c
2h̄3).

• Exponential atmosphere example: a molecule of mass m in the atmosphere has

potential energy mgh, where h is the height. The general expression P (E) ∝ e−E/kBT

then leads to an extra factor of e−mgh/kBT in the probability distribution. This implies

that the number density n = N/V for fixed T varies with h as n = n0e
−mgh/kBT . This

can also be derived by balancing the forces on a slice of air between h and h+ dh, where

the pressure differential between the top and bottom balances the weight of the air in the

slice, so dp = dnkBT = −mgndh.

• Chapter 11. The first law of thermodynamics. Demo of heat engine, and how

thermodynamics grew from desire to convert some heat ∆Q into work ∆W , and observed

impossibility of perpetual motion machines. This led to the concept of conservation of

energy. We will discuss it, and will write it as dU = /dQ + /dW , with /dWrev = −pdV .

Explain the /d and the minus sign.

• Let’s start with the math of what /d denotes. This notation is not common outside

of thermodynamics, but could be used more generally. It comes from the fact that we

want to call some small change of something (e.g. work) as d(something), but d means

two different things: small, and an exact differential, and not everything is both. The /d

means small change but not an exact differential, whereas d means an exact differential.
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Consider a function F (x, y), and then note that dF = ∂xFdx + ∂yFdy; this is an

example of a what is called an exact differential. Note that
∫
Γ
dF = F (xb) − F (xa)

depends only on the endpoints, not on the path Γ, and correspondingly
∮
Γ
dF = 0 for

any closed Γ. On the other hand, consider some /dG ≡ Gx(x, y)dx+ Gy(x, y)dy and note

that generally
∫
Γ
/dG depends on the path Γ, and generally

∮
Γ
/dG 6= 0 for closed paths.

By Stokes theorem, this is because generally the curl ∂yGx − ∂xGy 6= 0. The condition

for these integrals to be path independent, and to vanish for any closed path, is that the

curl should be zero, ∂yGx − ∂xGy = 0. Then locally (modulo what is called non-trivial

cohomology but we won’t discuss that more here), Gx = ∂xF and Gy = ∂yG, i.e. the

vector field with zero curl can locally be written as a gradient. (For those of you who took

my 105a class last year, recall analytic functions and the Cauchy-Riemann equations.) The

/d is a reminder that the quantity is not an exact differential, so it can have non-zero curl.

Example: /dG ≡ ydx has
∮
/dG = Aenclosed. On the other hand, dG = ydx+ xdy = d(xy)

has
∮
dG = 0.

An example from outside thermodynamics: the EMF change (work against electric

force per unit charge) /dE = ~E · d~ℓ can have non-zero EMF around a closed loop if there is

a time-dependent magnetic flux through the loop, and that is how we can make motors or

electrical generators via wire coils and magnets. We usually just write it in terms of ~E · d~ℓ

and use the statement that ~E can have non-zero curl, instead of defining /dE . The issue

in thermodynamics is that the two main quantities, heat and work elements, are useful

notions. We could just write −pdV instead of work and TdS instead of heat, but that

would obscure things. As we will now discuss, it is a good thing that /dW and /dQ are not

exact differentials – that is how cyclic engines can convert heat into work!

• PV diagrams for pistons. Consider gas in a piston, with pressure p and suppose that

the piston is allowed to expand reversibly. What this means is that the expansion is close

to equilibrium, so the forces are approximately balanced between the internal pressure and

the mechanical device that the piston is pushing against. The work done by the gas on

the piston if its pressure is p and its change of volume is dV = Adx is pdV , and the work

done on the gas inside by the piston is −pdV . Following the textbook, we will define

/dW = −pdV to be the work done on the system (some books instead define it to be the

work by the system and then /dWthere = −/dWhere). Example of a closed rectangle in the

pV plane, with
∮
/dW = ±Aenclosed, and the convention for the path orientation and overall

sign.
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• Conservation of energy dU = /dQ + /dW . Sometimes I call U = E. U is the total

internal energy, and it is a state variable. For an ideal gas, U = U(T ).

• Discuss heat, and heat capacity. CV ≡ (∂Q
∂T

)V and CP ≡ (∂Q
∂T

)P . Note that both are

extensive, and it is convenient to define the specific heats cV = CV /M and cP = CP /M ,

which just depend on the material (and in general T ), independent of the size of the sample.
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