
140a Lecture 5, 1/22/19

⋆ Week 3 reading: Blundell+Blundell, chapters 11, 12, 13.

• Last time:dU = /dQ + /dW , with /dWrev = −pdV . Heat capacity. CV ≡ (∂Q∂T )V and

CP ≡ (∂Q∂T )P . Note that both are extensive, and it is convenient to define the specific

heats cV = CV /M and cP = CP /M , which just depend on the material (and in general

T ), independent of the size of the sample.

• Define γ ≡ CP /CV . Always the case that γ ≡ CP /CV > 1: more heat required,

for fixed ∆T , in case of P = constant, because some goes into doing a positive amount

of work, whereas at constant V no work is done, so all added heat goes toward increasing

the internal energy, and thus the temperature.

• Plot cp and cV as a function of temperature, with T ∈ [0, 1000K] and e.g. c ∈

[0, 30 × 103J/kmoleK]. Classical physics dilemma: why does c(T → 0) → 0? We’ll see

why later, e.g. for small T , c(T )T−2e−α/T with α ∝ h̄. For T large, CV → f
2
NkB .

• Write U = U(T, V ). Exact differential means
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/dQ = dU + pdV so CV = (∂U∂T )V and CP = CV + [( ∂U∂V )T + p](∂V∂T )p. Note that

CP − CV =

(

/dQ
∂V

)

T

∂V
∂T

)p. We will later discuss Maxwell’s relations and see that this can

be rewritten in a way to show that it is always positive.

• For an ideal gas, U = f
2
NkBT and thus CV = f

2
NkB and CP = CV +NkB.

Note that γ = 1 + (NkB/CV ). For an ideal gas, U = CV T = NkBT/(γ − 1), with

γ = 1+ 2

f
. Emphasize that γ is a macroscopic observable, it is an easily measured property

of a gas. Isn’t it amazing that it tells us something about f?! That is a microscopic

property of molecules. In fact, this observable gave, in hindsight, amazing clues about

quantum mechanics already in the 1800s! Plots of f as a function of temperature showed

for some gasses it increasing as T increases, first f = 3, then f = 5, then f = 7. This is

as rotational and vibrational degrees of freedom were activated (which requires non-zero

energy because angular momentum and vibrational energy levels are quantized.

• Adiabatic means /dQ = 0 and reversible. For an ideal gas, dU = CV T and then the

first law for an adiabatic process gives CV dT = −pdV . Plug in dT = d(pV )/NkB to get

CV (pdV + V dp) = −NkBpdV so V dp+ γpdV = 0. This integrates to pV γ = constant.
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• Adiabatic atmosphere is a better approximation than T =constant, which we dis-

cussed last time. Eliminate V to write p(NkBT/p)
γ =constant. So (1 − γ)(dp/p) +

γ(dT/T ) = 0. Also dp
dz

= −mgp/kBT (last time), so dT
dz

= −(γ−1

γ
)(mg/kB).

• Examples of ∆W for ideal gas

1. isothermal: ∆U = 0. ∆Q = −∆W = NkBT ln(Vf/Vi) = NkBT ln(Pi/Pf ).

2. isochoric: ∆W = 0. ∆Q = ∆U = CV ∆T

3. isobaric: ∆W = −P∆V = −NkB∆T. ∆Q = CP∆T = (CV +NkB)∆T

4. adiabatic: ∆Q = 0. ∆W = ∆U = CV ∆T = 1

γ−1
∆(PV ).

• Engines. Efficiency η ≡ |W |/|QH |. E.g. isothermal expansion of ideal gas: |W | =

|Q| = nRT ln(Pi/Pf ) has η = 1, but this is a one-shot process. Final state differs from

initial.

• For an engine, want cyclic process, coming back to starting state, i.e. closed loop in

P/V diagram. For complete cycle, ∆U = 0 (state variable). Total work of process = |W | =

area enclosed by cycle in P/V diagram. In process, some heat |QH | is taken out of some

hot working substance (e.g. boiler), and then some heat is ejected into cold area (e.g. the

smoke going out into the atmosphere). |W | = |QH | − |QC |, so η = 1 − |QC |/|QH | ≤ 1.

Perfect engine would have η = 1, but this is impossible.
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