140a Lecture 5, 1/22/19

* Week 3 reading: Blundell+Blundell, chapters 11, 12, 13.
- Last time: $d U=\phi Q+\phi W$, with $\phi W_{\text {rev }}=-p d V$. Heat capacity. $C_{V} \equiv\left(\frac{\partial Q}{\partial T}\right)_{V}$ and $C_{P} \equiv\left(\frac{\partial Q}{\partial T}\right)_{P}$. Note that both are extensive, and it is convenient to define the specific heats $c_{V}=C_{V} / M$ and $c_{P}=C_{P} / M$, which just depend on the material (and in general $T)$, independent of the size of the sample.
- Define $\gamma \equiv C_{P} / C_{V}$. Always the case that $\gamma \equiv C_{P} / C_{V}>1$: more heat required, for fixed ΔT, in case of $P=$ constant, because some goes into doing a positive amount of work, whereas at constant V no work is done, so all added heat goes toward increasing the internal energy, and thus the temperature.
- Plot c_{p} and c_{V} as a function of temperature, with $T \in[0,1000 K]$ and e.g. $c \in$ $\left[0,30 \times 10^{3} \mathrm{~J} / \mathrm{kmole} \mathrm{K}\right]$. Classical physics dilemma: why does $c(T \rightarrow 0) \rightarrow 0$? We'll see why later, e.g. for small $T, c(T) T^{-2} e^{-\alpha / T}$ with $\alpha \propto \hbar$. For T large, $C_{V} \rightarrow \frac{f}{2} N k_{B}$.
- Write $U=U(T, V)$. Exact differential means

$$
d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V, \quad \text { with } \quad\left(\frac{\partial}{\partial V}\left(\frac{\partial U}{\partial T}\right)_{V}\right)_{T}=\left(\frac{\partial}{\partial T}\left(\frac{\partial U}{\partial V}\right)_{T}\right)_{V}
$$

$\phi Q=d U+p d V$ so $C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}$ and $C_{P}=C_{V}+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+p\right]\left(\frac{\partial V}{\partial T}\right)_{p}$. Note that $\left.C_{P}-C_{V}=\left(\frac{\phi Q}{\partial V}\right)_{T} \frac{\partial V}{\partial T}\right)_{p}$. We will later discuss Maxwell's relations and see that this can be rewritten in a way to show that it is always positive.

- For an ideal gas, $U=\frac{f}{2} N k_{B} T$ and thus $C_{V}=\frac{f}{2} N k_{B}$ and $C_{P}=C_{V}+N k_{B}$.

Note that $\gamma=1+\left(N k_{B} / C_{V}\right)$. For an ideal gas, $U=C_{V} T=N k_{B} T /(\gamma-1)$, with $\gamma=1+\frac{2}{f}$. Emphasize that γ is a macroscopic observable, it is an easily measured property of a gas. Isn't it amazing that it tells us something about f ?! That is a microscopic property of molecules. In fact, this observable gave, in hindsight, amazing clues about quantum mechanics already in the 1800s! Plots of f as a function of temperature showed for some gasses it increasing as T increases, first $f=3$, then $f=5$, then $f=7$. This is as rotational and vibrational degrees of freedom were activated (which requires non-zero energy because angular momentum and vibrational energy levels are quantized.

- Adiabatic means $d Q=0$ and reversible. For an ideal gas, $d U=C_{V} T$ and then the first law for an adiabatic process gives $C_{V} d T=-p d V$. Plug in $d T=d(p V) / N k_{B}$ to get $C_{V}(p d V+V d p)=-N k_{B} p d V$ so $V d p+\gamma p d V=0$. This integrates to $p V^{\gamma}=$ constant.
- Adiabatic atmosphere is a better approximation than $T=$ constant, which we discussed last time. Eliminate V to write $p\left(N k_{B} T / p\right)^{\gamma}=$ constant. So $(1-\gamma)(d p / p)+$ $\gamma(d T / T)=0$. Also $\frac{d p}{d z}=-m g p / k_{B} T$ (last time), so $\frac{d T}{d z}=-\left(\frac{\gamma-1}{\gamma}\right)\left(m g / k_{B}\right)$.
- Examples of ΔW for ideal gas

1. isothermal: $\Delta U=0 . \Delta Q=-\Delta W=N k_{B} T \ln \left(V_{f} / V_{i}\right)=N k_{B} T \ln \left(P_{i} / P_{f}\right)$.
2. isochoric: $\Delta W=0 . \Delta Q=\Delta U=C_{V} \Delta T$
3. isobaric: $\Delta W=-P \Delta V=-N k_{B} \Delta T . \quad \Delta Q=C_{P} \Delta T=\left(C_{V}+N k_{B}\right) \Delta T$
4. adiabatic: $\Delta Q=0 . \Delta W=\Delta U=C_{V} \Delta T=\frac{1}{\gamma-1} \Delta(P V)$.

- Engines. Efficiency $\eta \equiv|W| /\left|Q_{H}\right|$. E.g. isothermal expansion of ideal gas: $|W|=$ $|Q|=n R T \ln \left(P_{i} / P_{f}\right)$ has $\eta=1$, but this is a one-shot process. Final state differs from initial.
- For an engine, want cyclic process, coming back to starting state, i.e. closed loop in P / V diagram. For complete cycle, $\Delta U=0$ (state variable). Total work of process $=|W|=$ area enclosed by cycle in P / V diagram. In process, some heat $\left|Q_{H}\right|$ is taken out of some hot working substance (e.g. boiler), and then some heat is ejected into cold area (e.g. the smoke going out into the atmosphere). $|W|=\left|Q_{H}\right|-\left|Q_{C}\right|$, so $\eta=1-\left|Q_{C}\right| /\left|Q_{H}\right| \leq 1$. Perfect engine would have $\eta=1$, but this is impossible.

