
140a Lecture 6, 1/24/19

⋆ Week 3 reading: Blundell+Blundell, chapters 11, 12, 13.

• Last time: Examples of ∆W for ideal gas. Isothermal: ∆U = 0. ∆Q = −∆W =

NkBT ln(Vf/Vi) = NkBT ln(Pi/Pf ). Isochoric ∆W = 0. ∆Q = ∆U = CV ∆T . Isobaric:

∆W = −P∆V = −NkB∆T. ∆Q = CP∆T = (CV + NkB)∆T . Adiabatic: ∆Q = 0.

∆W = ∆U = CV ∆T = 1

γ−1
∆(PV ).

Engine efficiency η ≡ |W |/|QH |. E.g. isothermal expansion of ideal gas: |W | = |Q| =

nRT ln(Pi/Pf ) has η = 1, but this is a one-shot process. Final state differs from initial.

For an engine, want cyclic process, coming back to starting state, i.e. closed loop in P/V

diagram. For complete cycle, ∆U = 0 (state variable). Total work of process = |W | =

area enclosed by cycle in P/V diagram. In process, some heat |QH | is taken out of some

hot working substance (e.g. boiler), and then some heat is ejected into cold area (e.g. the

smoke going out into the atmosphere). |W | = |QH | − |QC |, so η = 1 − |QC |/|QH | ≤ 1.

Perfect engine would have η = 1, but this is impossible.

• Refrigerator performance: ω = |QC |/|W | = 1/(1− |QC |/|QH |). Perfect refrigerator

would have ω = ∞, but this is impossible.

• Early version of the 2nd law: (Clauius 1850) no device can be made that operates

in a cycle and whose SOLE effect is to transfer heat from cooler to hotter body. In other

words, no perfect refrigerators. Equivalent to Kelvin-Planck statement It is impossible to

construct a device that operates in a cycle and produces no other effect than the performance

of work and the exchange of heat with a single reservoir. In other words, no perfect engines.

Carnot (1824): there is an upper limit to the efficiency of a cyclic engine.

• Show that two statements are equivalent: with a perfect engine, could make a perfect

refrigerator; and given a perfect refrigerator could make a perfect engine.

• Nothing beats a reversible engine! Because otherwise, in combination with the

reversed engine (acting as a refrigerator) would violate Clauius’ statement. All reversible

engines have the same efficiency. η ≤ ηmax = ηrev. We’ll compute it for the Carnot engine.

• Mention non-cyclic process, A → B. Recall ∆U = ∆Q − ∆W = ∆QR − ∆WR.

General result: ∆W ≤ ∆WR and ∆Q ≤ ∆QR. Illustrate with ideal gas for 2 cases:

reversible isotherm and reversible adiabat, vs. irreversible counterparts.

• Stirling engine (2 isotherms, 2 isochorics). Non-zero QH on two sides and non-zero

QC on two sides of the PV diagram.

• Work through examples of a Carnot engine (2 isotherms, 2 adiabats). Obtain η =

1−TC/TH . Fill in the details: let the TH isotherm connect points (p1, V1) to points (p2, V2)

1



so p1V1 = p2V2. Let the adiabat from TH to TC connect (p2, V2) to (p3, V3) so p2V
γ
2

=

p3V
γ
3
. Let the isotherm at TC connect (p3, V3) to (p4, V4) so p3V3 = p4V4. Finally, the

adiabat from TC to TH has p4V
γ
4

= p1V
γ
1
. Compute QH = NkBTH ln(V2/V1) and QC =

NkBTC ln(V4/V3). Let us show that V2/V1 = V3/V4. Note that the adiabatic equation

pV γ = const can be written, using p = NkBT/V , as TV γ−1 =const. So THV γ−1

2
=

TCV
γ−1

3
and THV γ−1

1
= TCV

γ−1

4
. Dividing these equations gives V2/V1 = V3/V4. So

W = QH + QC = |QH | − |QC | = NkB(TH − TC) ln(V2/V1) and η = W/QH = (TH −

TC)/TH = (1− TC

TH
). Note that we can write this as

Carnot reversible engine : η =
|W |

|QH |
= 1−

TC

TH

↔
|QH |

TH

=
|QC |

TC

.

We will see next time that, when we put in the correct signs, this is the statement that

the entropy change of the two reservoirs sums to zero for a reversible engine (and that of

the cyclic engine is also zero, since entropy is a state variable).
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