
140a Lecture 8, 1/31/19

⋆ Week 4 reading: Blundell+Blundell, chapters 13, 14

• Emphasize how powerful a statement it is that something is a state variable. E.g.

dU = /dQ + /dW = /dQR + /dWR, with /dWR = −pdV . Can compute ∆U =
∫ f

i
dU by

considering any path between the initial and final states, even for irreversible processes,

e.g. free expansion of an ideal gas. Also, can compute ∆V for any process, even irreversible,

via ∆V = −
∫ f

i
/dWR/p for a reversible path with the same endpoints. Emphasizing this

because similar statements will apply to ∆S =
∫
/dQR/T .

• Last time: consider an arbitrary system O undergoing an arbitrary cyclic process.

Divide into N infinitesimal steps during which the temperature is constant, T1 . . . TN and

let Qi be the heat absorbed by the system while at temperature Ti. Now couple each step

to a tiny Carnot engines / refrigerators Ci, whose heat output is chosen to be O’s input on

the i-th step. The Carnot engines output is heat Qi and temperature Ti and their input is

heat Q∗
i = T∗Qi/Ti at temperature T∗ > Ti. The Carnot engines have input Wi = Qi−Q∗

i .

The system O does work WO =
∑

i Qi and the total work done by combining the system

and the attached Carnot engines is Wtotal = WO −
∑

i Wi =
∑

i Q
∗
i , which is the total

heat taken from a reservoir at T ∗. Kelvin’s statement implies that Wtotal < 0:

∑
i

Q∗

i ≤ 0, i.e.
∑
i

Qi

Ti

≤ 0, i.e.

∮
/dQ

T
≤ 0.

(Actually, we can replace T → Text here, allowing for the fact that the temperature

T of the system need not be be in equilibrium with the external surroundings.) For a

reversible cycle we can reverse to get inequality with /dQ → −/dQ (and Text = T ), so

∮
/dQR

T
= 0.

Note difference between /dQ/Text and /dQR/T .

• So /dQR/T = dS is a state variable! Like −/dWR/p = dV is a state variable.

• So S(B)− S(A) =
∫ B

A
/dQR/T over any reversible path.

• Thus
∫ B

A
/dQ/T ≤ S(B)− S(A), with equality iff reversible.

• Entropy of thermally isolated (/dQ = 0) system never decreases: Sf − Si ≥ 0.

Comment on the arrow of time. Thermally isolated system is in state of maximum entropy,

consistent with external constraints. If not thermally isolated, ∆Suniverse = ∆Ssystem +

∆Ssurroundings ≥ 0, with equality iff the process is reversible.
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• E.g. heat |Q| going from T2 to T1 has ∆S = |Q|(T−1

1
− T−1

2
) is properly positive iff

T2 > T1, recovering Clausius’s statement.

E.g. heat engine: ∆Stotal = ∆Sengine +∆SH +∆SC ≥ 0, with ∆Sengine = 0 since it

is cyclic, and ∆SH = −|Q2|/T2 and ∆SC = |Q1|/T1. Gives |W | ≤ |Q2|(1− T1/T2), with

equality iff the process is reversible. Carnot’s statement.

• E.g. put C1 and C2 objects at T1 and T2 into thermal contact. Work out Tf and

∆S. Consider limit C1 → ∞. Show that ∆S ≥ 0 and equal zero iff T1 = T2.

• For an ideal gas, dU = CV dT and pdV = NkBTdV/V so

Sf − Si =

∫ f

i

(dU + pdV )/T = CV ln(
Tf

Ti

) +NkB ln(
Vf

Vi

) = CP ln(
Tf

Ti

)−NkB ln(
pf
pi

).

Recall CP = CV +NkB for an ideal gas.

• E.g. gas in a container of volume V1 suddenly expands to volume V2. Irre-

versible. Compute ∆S from any reversible path, e.g. a reversible isotherm, to get

∆S = NkB ln(V2/V1). In the reversible version, this is balanced out by the entropy change

of the heat reservoir. In the irreversible process, there is no heat reservoir and process

causes ∆Suniverse > 0.

• E.g. two different ideal gasses in two containers, and then the partition is removed,

get

∆Smixing = N1kB ln(
V1 + V2

V1

) +N2kB ln(
V1 + V2

V2

)

(discuss the Gibbs paradox, will return to it later). If T1 6= T2, also get

∆STi→Tf
= CV,1 ln(

Tf

T1

) + CV2
ln(

Tf

T2

).

Can verify that each of these contributions are positive, e.g. if CV,1 = CV,2 = C then

Tf = 1

2
(T1 + T2).
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