\star Week 5 reading: Blundell+Blundell, chapters $14,15,16$

- Consider heat Q that flows out of bath at T_{2}, then irreversibly down to T_{1}, and then via a reversible engine down to T_{0}. If the reversible step were omitted, $W_{\max }=$ $Q\left(1-\frac{T_{0}}{T_{2}}\right)$. Because of the reversible step, now $W_{\max }^{\prime}=Q\left(1-\frac{T_{0}}{T_{1}}\right)$. So the wasted energy is $W_{\max }-W_{\max }^{\prime}=Q\left(\frac{T_{0}}{T_{1}}-\frac{T_{0}}{T_{2}}\right)=T_{0} \Delta S$, which illustrates that irreversible processes, producing entropy, wastes available energy ...forever. Illustrates how $\Delta S_{t o t a l}$ is a measure of the degradation of energy. Quality vs quantity: energy is the quantity, conserved regardless, irrespective of whether or not it is useful. But ΔS accounts for the inevitable, and irreversible, degradation of energy, towards a useless quality form.

We will soon consider the Helmholtz free energy $F=U-T S$, we will see that F measures the maximum work that a system can do with fixed temperature and volume $W \leq-\Delta F$.

- Slope of isochoric and isobaric curves in a $T S$ diagram:

If $d V=0$ then $d U=C_{V} d T=T d S$, so slope $d T / d S=T / C_{V}$. If $d p=0$ then $d U+p d V=d(U+p V)=C_{p} d T=T d S$, so slope $d T / d S=T / C_{p}$.

Recall for an ideal gas:

$$
S_{f}-S_{i}=\int_{i}^{f}(d U+p d V) / T=C_{V} \ln \left(\frac{T_{f}}{T_{i}}\right)+N k_{B} \ln \left(\frac{V_{f}}{V_{i}}\right)=C_{P} \ln \left(\frac{T_{f}}{T_{i}}\right)-N k_{B} \ln \left(\frac{p_{f}}{p_{i}}\right)
$$

Can verify the above $d T / d S$ using these.

- $d U=\not U Q+\not d W=\nmid Q_{R}+\not d W_{R}=T d S-p d V$. This means that $U=U(S, V)$ and

$$
\begin{aligned}
T & =\left(\frac{\partial U}{\partial S}\right)_{V}, \quad p=-\left(\frac{\partial U}{\partial V}\right)_{S} \\
\rightarrow \frac{p}{T} & =-\left(\frac{\partial U}{\partial V}\right)_{S}\left(\frac{\partial S}{\partial U}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{U}
\end{aligned}
$$

The last identity follows from combining $d U=\left(\frac{\partial U}{\partial S}\right)_{V} d S+\left(\frac{\partial U}{\partial V}\right)_{S} d V$ and a similar formula for $d S(V, U)$.

Check and verify it for an ideal gas.

- Recall our earlier discussion that the system is in equilibrium when it has the largest possible Ω and how this for combining systems reproduces the condition that equilibrium is when the temperatures are equal, with $\frac{1}{k_{B} T}=\frac{d \ln \Omega}{d E}$. Comparing with $T=\left(\frac{\partial U}{\partial S}\right)_{V}$, this gives the Boltzmann formula

$$
S=k_{B} \ln \Omega
$$

More on arrow of time and increasing randomness.

- Gibbs' expression: $S=-k_{B} \sum_{i} P_{i} \ln P_{i}$. Divide the N microstates into groups of macrostates, with n_{i} microstates in the i-th macrostate, so $N=\sum_{i} n_{i}$. The probability of finding the i-th macrostate is $P_{i}=n_{i} / N$ assuming that all are equally likely. Then $S_{\text {tot }}=k_{B} \ln N=S+S_{\text {micro }}$, where $S_{\text {micro }}=\sum_{i} P_{i} S_{i}$ and $S_{i}=k_{B} \ln n_{i}$ is the entropy of the microstates in each macrostate. The observed entropy is $S=S_{t o t}-S_{m i c r o}=k_{B} \sum_{i} P_{i} \ln P_{i}$. In the HW you will use $P_{i}=e^{-\beta E_{i}} / Z$ to obtain $S=k_{B} \ln Z+\beta U$, where $\beta=1 / k_{B} T$.
- Shannon Information theory: $Q=-k \ln P$ is a measure of the information content (surprise) of a statement, where P is the probability that it is true. If $P=1$, then there is no surprise, while if $P \ll 1$ then we are very surprised if it occurs. The Shannon entropy $S=\langle Q\rangle=\sum Q_{i} P_{i}$ is the expected surprise. In quantum mechanics, we can replace a pure state with a mixed state density matrix $\rho=\sum_{i} P_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ to account for classical probability of different states. Then $S(\rho)=-\operatorname{Tr}(\rho \ln \rho)$. In thermal physics we take $\rho=\exp (-\beta H)$. There is a nice discussion in chapter 15 , which we will mostly skip because of time and topic constraints; perhaps it will be discussed more in 140b.
- Discuss Maxwell's demon and the entropy vs information in its mischievous brain.

