110b HW Due 2/28/20

- 1. Taylor 15.60 (only turn it in if you didn't in the last HW set).
- 2. In lecture, we discussed the Lorentz transformation Λ of a four vector a^{μ} under boosts with velocity v along the x-axis.
 - (a) Verify that a_{μ} transforms by the inverse Λ^{-1} , which is related to Λ by $v \to -v$.

(b) Using the chain rule, show that $\frac{\partial}{\partial x^{\mu}}$ transforms the same way as a_{μ} , with a lower index. So $\frac{\partial}{\partial x^{\mu}} \equiv \partial_{\mu}$.

(c) Verify that the Lorentz boost along the x-axis satisfies $\Lambda^T \eta \Lambda = \eta$, where η is the flat metric of spacetime.

3. Consider the spacetime path $x \equiv x^1 = x_0(\cosh \lambda - 1)$, $ct = x_0 \sinh \lambda$, where λ is a coordinate along the spacetime worldline of the object.

(a) Compute the proper time $d\tau$ for this path, and show that it is proportional to $d\lambda$, therefore λ is proportional to τ . Find the proportionality constant.

(b) Compute the 4-velocity $u^{\mu} = \frac{dx^{\mu}}{d\tau}$ and $v \equiv \frac{dx}{dt}$ for this path, as a function of the proper time τ .

(c) Compute the 4-acceleration $a^{\mu} = \frac{d^2 x^{\mu}}{d\tau^2}$.

- 4. A rocket passes Earth, with velocity $\vec{v}_{rel} = 4c/5\hat{x}$ relative to the Earth reference frame. A passenger on the rocket throws a ball with velocity $\vec{v}'_{ball} = (c/2)(\cos\theta'\hat{x} + \sin\theta'\hat{y}')$. Write the velocity \vec{v}_{ball} as seen by an observer on Earth. Check that your answers are sensible for the special cases of $\theta' = 0$ and $\theta' = \pi/2$ and $\theta' = \pi$.
- 5. A particle of rest mass energy $m_1 = 3GeV$ and total energy $E_1 = 5GeV$ is traveling along the $+\hat{x}$ axis. It collides head one with a particle of rest mass energy $m_2 = 4GeV$ and total energy $E_2 = 5GeV$, that was traveling along the $-\hat{x}$ axis. The two particles fuse into a single particle. Write your answers in c = 1 units, with energy in GeV.
 - (a) What is the energy E_3 and momentum \vec{p}_3 of that final state particle?
 - (b) What is the mass m_3 of that final state particle?
 - (c) What is the velocity \vec{v}_3 of the final state particle?