1. Taylor 15.60 (only turn it in if you didn't in the last HW set).
2. In lecture, we discussed the Lorentz transformation Λ of a four vector a^{μ} under boosts with velocity v along the x-axis.
(a) Verify that a_{μ} transforms by the inverse Λ^{-1}, which is related to Λ by $v \rightarrow-v$.
(b) Using the chain rule, show that $\frac{\partial}{\partial x^{\mu}}$ transforms the same way as a_{μ}, with a lower index. So $\frac{\partial}{\partial x^{\mu}} \equiv \partial_{\mu}$.
(c) Verify that the Lorentz boost along the x-axis satisfies $\Lambda^{T} \eta \Lambda=\eta$, where η is the flat metric of spacetime.
3. Consider the spacetime path $x \equiv x^{1}=x_{0}(\cosh \lambda-1), c t=x_{0} \sinh \lambda$, where λ is a coordinate along the spacetime worldline of the object.
(a) Compute the proper time $d \tau$ for this path, and show that it is proportional to $d \lambda$, therefore λ is proportional to τ. Find the proportionality constant.
(b) Compute the 4 -velocity $u^{\mu}=\frac{d x^{\mu}}{d \tau}$ and $v \equiv \frac{d x}{d t}$ for this path, as a function of the proper time τ.
(c) Compute the 4 -acceleration $a^{\mu}=\frac{d^{2} x^{\mu}}{d \tau^{2}}$.
4. A rocket passes Earth, with velocity $\vec{v}_{r e l}=4 c / 5 \widehat{x}$ relative to the Earth reference frame. A passenger on the rocket throws a ball with velocity $\vec{v}_{\text {ball }}^{\prime}=(c / 2)\left(\cos \theta^{\prime} \widehat{x}+\sin \theta^{\prime} \widehat{y}^{\prime}\right)$. Write the velocity $\vec{v}_{\text {ball }}$ as seen by an observer on Earth. Check that your answers are sensible for the special cases of $\theta^{\prime}=0$ and $\theta^{\prime}=\pi / 2$ and $\theta^{\prime}=\pi$.
5. A particle of rest mass energy $m_{1}=3 G e V$ and total energy $E_{1}=5 G e V$ is traveling along the $+\widehat{x}$ axis. It collides head one with a particle of rest mass energy $m_{2}=4 \mathrm{GeV}$ and total energy $E_{2}=5 G e V$, that was traveling along the $-\widehat{x}$ axis. The two particles fuse into a single particle. Write your answers in $c=1$ units, with energy in $G e V$.
(a) What is the energy E_{3} and momentum \vec{p}_{3} of that final state particle?
(b) What is the mass m_{3} of that final state particle?
(c) What is the velocity \vec{v}_{3} of the final state particle?
