## 110b HW Due 3/4/20

1. (a) Show that $u^{\mu}=\frac{d x^{\mu}}{d \tau}$ and $a^{\mu}=\frac{d u^{\mu}}{d \tau}$ must satisfy $a_{\mu} u^{\mu}=0$.
(b) Let $\vec{a}^{\prime}$ be the space component of $a^{\mu}$ in the objects own (instantaneous) rest frame (the object is accelerating, but at any instant we can go to a frame where it is at rest). What is $a^{0^{\prime}}$ in that frame?
(c) Write $\vec{a}^{\prime} \cdot \vec{a}^{\prime}$ in terms of a Lorentz invariant quantity.
(d) Consider the spacetime trajectory $x \equiv x^{1}=x_{0}(\cosh \lambda-1)$, $c t=x_{0} \sinh \lambda$, where $\lambda$ is a coordinate along the spacetime worldline of the object, proportional to proper time $\tau$ (as shown in the previous HW). Compute the 4 -vectors $u^{\mu}, a^{\mu}$ for this trajectory, and also $u_{\mu} u^{\mu}$ and $a_{\mu} u^{\mu}$ and $a_{\mu} a^{\mu}$. Using the above results, determine $\vec{a}^{\prime} \cdot \vec{a}^{\prime}$ for this trajectory.
2. Taylor 15.74.
3. Taylor 15.92.
