110b HW Due 3/4/20

1. (a) Show that $u^{\mu} = \frac{dx^{\mu}}{d\tau}$ and $a^{\mu} = \frac{du^{\mu}}{d\tau}$ must satisfy $a_{\mu}u^{\mu} = 0$.

(b) Let \vec{a}' be the space component of a^{μ} in the objects own (instantaneous) rest frame (the object is accelerating, but at any instant we can go to a frame where it is at rest). What is $a^{0'}$ in that frame?

(c) Write $\vec{a}' \cdot \vec{a}'$ in terms of a Lorentz invariant quantity.

(d) Consider the spacetime trajectory $x \equiv x^1 = x_0(\cosh \lambda - 1)$, $ct = x_0 \sinh \lambda$, where λ is a coordinate along the spacetime worldline of the object, proportional to proper time τ (as shown in the previous HW). Compute the 4-vectors u^{μ} , a^{μ} for this trajectory, and also $u_{\mu}u^{\mu}$ and $a_{\mu}u^{\mu}$ and $a_{\mu}a^{\mu}$. Using the above results, determine $\vec{a}' \cdot \vec{a}'$ for this trajectory.

2. Taylor 15.74.

3. Taylor 15.92.