1. As discussed in lecture, $H=\sqrt{(c \vec{p}-q \vec{A}(t, \vec{x}))^{2}+\left(m c^{2}\right)^{2}}+q \phi(t, \vec{x})$.
(a) Use Hamilton's equations to obtain $\vec{v}=\frac{d \vec{x}}{d t}$. Use this to show

$$
\sqrt{(c \vec{p}-q \vec{A})^{2}+\left(m c^{2}\right)^{2}}=\gamma m c^{2}, \quad \text { and } \quad \vec{p}=\gamma m \vec{v}+\frac{q}{c} \vec{A}
$$

(b) Use Hamilton's equation to obtain $\frac{d p^{i}}{d t}$ (hint: write all the vector indices out, rather than using vector and dot product notation, to avoid making errors). Show that this leads to the Lorentz force law in the form

$$
\frac{d}{d t}(\gamma m \vec{v})=q\left(\vec{E}+\frac{\vec{v}}{c} \times \vec{B}\right) \quad \text { so } \quad \vec{f}=m \frac{d \vec{u}}{d \tau}=\frac{q}{c}\left(\vec{E} u^{0}+\vec{u} \times \vec{B}\right) .
$$

2. Verify that the Lorentz transformation of $F^{\mu \nu}$ (for the case of a boost along the x axis) gives the transformations of \vec{E} and \vec{B} that were discussed in a lecture.
3. Suppose that $T^{\mu \nu}=\left(p c^{-2}+\rho\right) u^{\mu} u^{\nu}-p \eta^{\mu \nu}$ where ρ and p are Lorentz invariants and u^{μ} is the 4 -velocity of the frame relative to the rest frame of a fluid that fills the space.
(a) Compute $T^{\mu \nu}$ in the rest frame of the fluid.
(b) Compute $T^{\mu^{\prime} \nu^{\prime}}$ in a frame that is moving with velocity $\vec{v}=\frac{4}{5} c \widehat{x}$ relative to the rest frame.
(c) Compute $\eta_{\mu \nu} T^{\mu \nu}$ in both frames. Do they agree? Should they?
4. (a) Taylor 16.24.
(b) Taylor 16.34.
