1/6/20 Lecture outline

* Reading: Taylor sections 13.1, 13.2, 13.3, Chapter 8.

- Recall classical mechanics v1: $\vec{F}=\dot{\vec{p}}$, with $\vec{p}=m \dot{\vec{x}}$; 2nd order ODE for $\vec{x}(t)$.

Classical mechanics v2: Least action $S=\int d t L\left(q_{a}, \dot{q}_{a}, t\right), \delta S=0 \rightarrow$ Euler Lagrange equations for generalized coordinates and momenta: $\dot{p}_{a}=\frac{\partial L}{\partial q_{a}}$, with $p_{a}=\frac{\partial L}{\partial \dot{q}_{a}}$. Can focus on the right coordinate, e.g. the angle for a pendulum. Symmetries \leftrightarrow conservation laws (Noether): translation invariance \leftrightarrow conservation of momentum, rotational symmetry \leftrightarrow conservation of angular momentum, time translation invariance \leftrightarrow conservation of energy.

- Classical mechanics v3: Hamilton's description. The Hamilton is related to the Lagrangian by a Legendre transform (similar transforms appear in thermodynamics)

$$
H\left(q_{a}, p_{a}, t\right) \equiv \sum_{a} p_{a} \dot{q}_{a}-L\left(q_{a}, \dot{q}_{a}, t\right), \quad L\left(q_{a}, \dot{q}_{a}, t\right) \equiv \sum_{a} p_{a} \dot{q}_{a}-H\left(q_{a}, p_{a}, t\right)
$$

The Lagrangian depends on the velocities \dot{q}_{a}, whereas the Hamilton is expressed instead in terms of the momenta p_{a}. To see what H depends on, note that, using the EL equations,

$$
d H=\sum_{a}\left(d p_{a} \dot{q}_{a}+p_{a} d \dot{q}_{a}-\frac{\partial L}{\partial q_{a}} d q_{a}-\frac{\partial L}{\partial \dot{q}_{a}} d \dot{q}_{a}\right)-\frac{\partial L}{\partial t} d t=\sum_{a}\left(d p_{a} \dot{q}_{a}-\dot{p}_{a} d q_{a}\right)-\frac{\partial L}{\partial t} d t
$$

the cancellation of the $d \dot{q}$ term shows that H should not be regarded as depending on \dot{q}. Moreover, we can read off from the above Hamilton's equations

$$
\dot{q}_{a}=\frac{\partial H}{\partial p_{a}}, \quad \dot{p}_{a}=-\frac{\partial H}{\partial q_{a}}, \quad \frac{d H}{d t}=\frac{\partial H}{\partial t}+\sum_{a}\left(\frac{\partial H}{\partial q_{a}} \dot{q}_{a}+\frac{\partial H}{\partial p_{a}} \dot{p}_{a}\right)=\frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t} .
$$

The $\left(q_{a}, p_{a}\right)$ variables are called phase space and the second order ODE for $q_{a}(t)$ is replaced with two first order ODEs for $q_{a}(t)$ and $p_{a}(t)$.

- Example: the SHO, with $L=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} m \omega^{2} x^{2}$. The EL equations are $\frac{d^{2} x}{d t^{2}}=-\omega^{2} x$, and are solved by $x=A \cos (\omega t+\varphi)$, with A and φ the expected two constants of integration, which can be determined by the initial position and velocity. The Hamiltonian is $H=$ $\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}$ and Hamilton's equations are $\dot{x}=p / m$ and $\dot{p}=-m \omega^{2} x$. The solution of these equations is an ellipse in phase space $x=A \cos (\omega t+\varphi), p=m \dot{x}=-m \omega A \sin (\omega t+\varphi)$. Since H does not depend explicitly on t, the Hamiltonian is a constant of the motion, and in this case this gives an ellipse:

$$
H(x, p)=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}=\frac{1}{2} m \omega^{2} A^{2}=\text { constant. }
$$

- The 110a class last quarter did not get to two-body central force motion. This is an important topic, so we will cover it now.

Consider two point masses, m_{1} and m_{2}, with locations $\vec{x}_{1}(t)$ and $\vec{x}_{2}(t)$. We can apply this for example, to the sun and the earth in the approximation where we ignore the fact that they're not really point masses; this is a pretty good approximation because their separation is so large compared to their radii. The Lagrangian is assumed to be translationally invariant in space and time, and rotationally invariant, so $U\left(\vec{x}_{1}, \vec{x}_{2}, t\right)=$ $U(r)$ with $r=\left|\vec{x}_{1}-\vec{x}_{2}\right|:$

$$
L=\frac{1}{2} m_{1} \dot{\vec{x}}_{1}^{2}+\frac{1}{2} m_{2} \dot{\vec{x}}_{2}^{2}-U(r) .
$$

The symmetries imply conservation of total momentum, energy, and angular momentum:

$$
\begin{gathered}
\vec{p}_{t o t}=\vec{p}_{1}+\vec{p}_{2}=m_{1} \dot{\vec{x}}_{1}+m_{2} \dot{\vec{x}}_{2}, \quad H=\frac{\vec{p}_{1}^{2}}{2 m_{1}}+\frac{\vec{p}_{2}^{2}}{2 m_{2}}+U(r), \quad \vec{L}_{t o t}=\vec{x}_{1} \times \vec{p}_{1}+\vec{x}_{2} \times \vec{p}_{2} \\
\dot{\vec{p}}_{t o t}=\dot{H}=\dot{\vec{L}}_{t o t}=0 .
\end{gathered}
$$

We can choose an inertial frame of reference where $\vec{p}_{t o t}=0$; this is called the center of momentum (or sometimes called center of mass) frame. This means that $\vec{R}=\left(m_{1} \vec{x}_{1}+\right.$ $\left.m_{2} \vec{x}_{2}\right) / M$, with $M \equiv m_{1}+m_{2}$ is chosen to be a constant. The dynamical coordinate is then just the relative position $\vec{r} \equiv r_{1}-\vec{r}_{2}$ and we can write

$$
L=\frac{1}{2} M \dot{\vec{R}}^{2}+\frac{1}{2} \mu \dot{\vec{r}}^{2}-U(r) \rightarrow L=\frac{1}{2} \mu \dot{\vec{r}}^{2}-U(r), \quad \mu \equiv \frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

Then $\vec{L}=\vec{r} \times \vec{p}, \vec{p}=\mu \dot{\vec{r}}$ and $\dot{\vec{p}}=-\nabla U(r)=-\frac{d U}{d r} \widehat{r}$.

