
1/6/20 Lecture outline

⋆ Reading: Taylor sections 13.1, 13.2, 13.3, Chapter 8.

• Recall classical mechanics v1: ~F = ~̇p, with ~p = m~̇x; 2nd order ODE for ~x(t).

Classical mechanics v2: Least action S =
∫
dtL(qa, q̇a, t), δS = 0 → Euler Lagrange

equations for generalized coordinates and momenta: ṗa = ∂L
∂qa

, with pa = ∂L
∂q̇a

. Can focus

on the right coordinate, e.g. the angle for a pendulum. Symmetries ↔ conservation laws

(Noether): translation invariance ↔ conservation of momentum, rotational symmetry ↔

conservation of angular momentum, time translation invariance ↔ conservation of energy.

• Classical mechanics v3: Hamilton’s description. The Hamilton is related to the

Lagrangian by a Legendre transform (similar transforms appear in thermodynamics)

H(qa, pa, t) ≡
∑

a

paq̇a − L(qa, q̇a, t), L(qa, q̇a, t) ≡
∑

a

paq̇a −H(qa, pa, t).

The Lagrangian depends on the velocities q̇a, whereas the Hamilton is expressed instead in

terms of the momenta pa. To see what H depends on, note that, using the EL equations,

dH =
∑

a

(
dpaq̇a + padq̇a −

∂L

∂qa
dqa −

∂L

∂q̇a
dq̇a

)
−

∂L

∂t
dt =

∑

a

(dpaq̇a − ṗadqa)−
∂L

∂t
dt

the cancellation of the dq̇ term shows that H should not be regarded as depending on q̇.

Moreover, we can read off from the above Hamilton’s equations

q̇a =
∂H

∂pa
, ṗa = −

∂H

∂qa
,

dH

dt
=

∂H

∂t
+

∑

a

(
∂H

∂qa
q̇a +

∂H

∂pa
ṗa) =

∂H

∂t
= −

∂L

∂t
.

The (qa, pa) variables are called phase space and the second order ODE for qa(t) is

replaced with two first order ODEs for qa(t) and pa(t).

• Example: the SHO, with L = 1

2
mẋ2− 1

2
mω2x2. The EL equations are d2x

dt2
= −ω2x,

and are solved by x = A cos(ωt+ϕ), withA and ϕ the expected two constants of integration,

which can be determined by the initial position and velocity. The Hamiltonian is H =
p2

2m
+ 1

2
mω2x2 and Hamilton’s equations are ẋ = p/m and ṗ = −mω2x. The solution of

these equations is an ellipse in phase space x = A cos(ωt+ϕ), p = mẋ = −mωA sin(ωt+ϕ).

Since H does not depend explicitly on t, the Hamiltonian is a constant of the motion, and

in this case this gives an ellipse:

H(x, p) =
p2

2m
+ 1

2
mω2x2 = 1

2
mω2A2 = constant.
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• The 110a class last quarter did not get to two-body central force motion. This is an

important topic, so we will cover it now.

Consider two point masses, m1 and m2, with locations ~x1(t) and ~x2(t). We can apply

this for example, to the sun and the earth in the approximation where we ignore the

fact that they’re not really point masses; this is a pretty good approximation because

their separation is so large compared to their radii. The Lagrangian is assumed to be

translationally invariant in space and time, and rotationally invariant, so U(~x1, ~x2, t) =

U(r) with r = |~x1 − ~x2|:

L = 1

2
m1~̇x1

2

+ 1

2
m2~̇x2

2

− U(r).

The symmetries imply conservation of total momentum, energy, and angular momentum:

~ptot = ~p1 + ~p2 = m1~̇x1 +m2~̇x2, H =
~p2
1

2m1

+
~p2
2

2m2

+ U(r), ~Ltot = ~x1 × ~p1 + ~x2 × ~p2

~̇ptot = Ḣ = ~̇Ltot = 0.

We can choose an inertial frame of reference where ~ptot = 0; this is called the center

of momentum (or sometimes called center of mass) frame. This means that ~R = (m1~x1 +

m2~x2)/M , with M ≡ m1 +m2 is chosen to be a constant. The dynamical coordinate is

then just the relative position ~r ≡ r1 − ~r2 and we can write

L = 1

2
M ~̇R

2

+ 1

2
µ~̇r

2

− U(r) → L = 1

2
µ~̇r

2

− U(r), µ ≡
m1m2

m1 +m2

.

Then ~L = ~r × ~p, ~p = µ~̇r and ~̇p = −∇U(r) = −dU
dr

r̂.
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