* Reading: Sections 10.4 through 10.8

- Moment of inertia tensor $I_{j k} \equiv \sum_{a} m_{a}\left(\vec{r}_{a}^{2} \delta_{j k}-r_{j} r_{k}\right)=I_{k j}$ enters in $L_{j}=I_{j k} \omega_{k}$ and $T_{\text {rot }}=\frac{1}{2} I_{j k} \omega_{j} \omega_{k}$ (sum repeated indices $k=1,2,3$. Under a rotation, vectors transform as $\vec{\omega} \rightarrow \vec{\omega}^{\prime}=R \vec{\omega}$ where $R_{k^{\prime} j}$ is a 3×3 rotation matrix (which is an orthogonal matrix $R^{T}=R^{-1}$, which ensures that $\vec{\omega}^{\prime} \cdot \vec{\omega}^{\prime}=\vec{\omega} \cdot \vec{\omega}$. A tensor $I_{j k}$ transforms as a vector for each index, which can be written as $I \rightarrow I^{\prime}=R I R^{T}$. Such a rotation can be used to diagonalize $I_{j k}$, and the rotation is given by the matrix of eigenvectors: $R_{a j}=\psi_{j}^{a}$ (each row a has columns given by an eigenvector).
- The eigenvectors $\vec{\psi}^{a}$ of the inertia tensor are called the principal axes, and the eigenvalues λ_{a} are called the principal moments: $\vec{L}=\lambda \vec{\omega}$. We can find three orthogonal eigenvectors $\vec{\psi}_{i=1,2,3}$ and write I in this basis as a diagonal matrix with the three eigenvalues $\lambda_{i=1,2,3}$ along the diagonal. Recall that $\operatorname{Tr} I$ and det I are invariant under $I \rightarrow R I R^{-1}$, so they can be written in terms of the eigenvalues as $\operatorname{Tr} I=\sum_{i=1}^{3} \lambda_{i}$ and $\operatorname{det} I=\prod_{i=1}^{3} \lambda_{i}$.

Let's agree to call the eigenvalues $\lambda_{j}=I_{j}$.

- Recall the example of a cube of mass M and side length a. If it's rotating around its center, easily get $\mathbf{I}=\frac{1}{6} \mathbf{1}$: it is diagonal, with equal eigenvalues. Now instead consider rotation around a corner, taking the corner at the origin. Get $I_{\text {corner }}$ either from doing the integrals or the parallel axis theorem: $I_{j=k} \frac{2 M a^{2}}{3}$ and $I_{j \neq k}=-\frac{M a^{2}}{4}$. By symmetry, clearly one of the principal axes is along the diagonal, so $\vec{\psi}_{1}=\frac{1}{\sqrt{3}}(1,1,1)$, which has principal moment eigenvalue $I_{1}=M a^{2} / 6$. The other two principal axes are perpendicular and here, because of the symmetry, they have the same eigenvalue, $I_{2}=I_{3}$. The original I must have trace equal to $I_{1}+I_{2}+I_{3}$ and determinant equal to $I_{1} I_{2} I_{3}$. Indeed, find $I_{2}=I_{3}=\frac{11}{12} M a^{2}$.
- Planar mass distribution (in the plane $z=0$) has $I_{x z}=I_{y z}=0$ and $I_{x x}+I_{y y}=I_{z z}$. One of the eigenvectors is $I_{3}=I_{z z}$. The other two eigenvectors are those of the 2×2 block and they satisfy $I_{1}+I_{2}=I_{3}$ and $I_{2} I_{3}=I_{x x} I_{y y}-I_{x y}^{2}$.
- Consider a top that is spun along a principal axis, say $\vec{\omega}=\vec{\psi}_{3}$, so $\vec{L}=I_{3} \vec{\omega}$. The external torque from gravity acts on the CM as $\vec{\Gamma}^{e x t}=\vec{R} \times M \vec{g}$ and then $\frac{d}{d t} \vec{L}=\vec{R} \times M \vec{g}$. Assuming the top is symmetric we have $\vec{R}=\frac{R}{\omega} \vec{\omega}$ and thus $\dot{\vec{L}}=\frac{M g R}{I \omega} \hat{z} \times \vec{L} \equiv \vec{\Omega} \times \vec{L}$ with $\vec{\Omega}=\frac{M g R}{I \omega} \hat{z}$ the angular velocity of precession. (Note units are indeed s^{-1}.)

