2/5/20 Lecture outline

* Reading: Sections 10.4 through 10.8

- Last time: top that is spun along a principal axis, say $\vec{\omega}=\vec{\psi}_{3}$, so $\vec{L}=I_{3} \vec{\omega}$. The external torque from gravity acts on the CM as $\vec{\Gamma}^{e x t}=\vec{R} \times M \vec{g}$ and then $\frac{d}{d t} \vec{L}=\vec{R} \times M \vec{g}$. Assuming the top is symmetric we have $\vec{R}=\frac{R}{\omega} \vec{\omega}$ and thus $\dot{\vec{L}}=\frac{M g R}{I \omega} \hat{z} \times \vec{L} \equiv \vec{\Omega} \times \vec{L}$ with $\vec{\Omega}=\frac{M g R}{I \omega} \hat{z}$ the angular velocity of precession. (Note units are indeed s^{-1}.)
- It is useful to go to the non-inertial, rotating frame whose basis vectors are the principal axes. Recall that for any vector $\left.\dot{\vec{Q}}\right|_{\text {space }}=\left.\dot{\vec{Q}}\right|_{\text {body }}+\vec{\omega} \times \vec{Q}$ where "space" refers to an inertial frame that is fixed in the lab, and "body" refers to a non-inertial frame that is fixed on the rotating body, so $\vec{\Omega} \rightarrow \vec{\omega}$.

Apply this to the case of angular momentum to get Euler's equation:

$$
\left.\frac{d \vec{L}}{d t}\right|_{\text {space }}=\vec{\Gamma}_{e x t}=\left.\frac{d \vec{L}}{d t}\right|_{b o d y}+\vec{\omega} \times \vec{L}
$$

Use this and $L_{j}=I_{j k} \omega_{k}$ to determine the dynamical rotation $\vec{\omega}(t)$ of the body.
In the body frame, we can take $\vec{R}=0$ so e.g. for $\vec{\Gamma}^{e x t}=\vec{R} \times \vec{F}_{\text {ext }}$, get $\vec{\Gamma}^{\text {ext }}=0$.

- Use the principal axis basis, so $\vec{\omega}=\sum_{i=1}^{3} \omega_{i} \vec{\psi}_{i}$ and $\vec{L}=\sum_{i} I_{i} \omega_{i} \vec{\psi}_{i}$, Euler's equations are

$$
I_{i} \dot{\omega}_{i}=\sum_{j k} \epsilon_{i j k} I_{j} \omega_{j} \omega_{k}+\vec{\Gamma}_{k}^{e x t}
$$

The equations are generally complicated to solve, even for case $\vec{\Gamma}^{e x t}=0$. A special case: if $\omega_{1}=\omega_{2}=0$, then get $\omega_{3}=\omega_{0}$ is a constant.

Now study small variations from this case, $\vec{\omega}=\omega_{0} \vec{\psi}_{3}+\delta \vec{\omega}$ and linearize in $\delta \omega_{i}$. Get $\dot{\delta} \omega_{3} \approx 0$

$$
I_{1} \delta \dot{\omega}_{1} \approx\left(I_{2}-I_{3}\right) \omega_{0} \delta \omega_{2}, \quad I_{2} \delta \dot{\omega}_{2} \approx\left(I_{3}-I_{1}\right) \omega_{0} \delta \omega_{1}
$$

Combine to get:

$$
\frac{d^{2}}{d t^{2}} \omega_{i=1,2}=-\Omega^{2} \omega_{i=1,2}, \quad \Omega^{2}=\frac{\left(I_{3}-I_{2}\right)\left(I_{3}-I_{1}\right)}{I_{1} I_{2}} \omega_{0}^{2}
$$

The equations are stable oscillations if $\Omega^{2}>0$ and are exponentials if $\Omega^{2}<0$. Tennis racquet theorem: rotation around the principal axis with largest or smallest moment is stable, whereas rotation around the axis with middle moment of inertia is unstable.

- Torque free with $I_{1}=I_{2}$: free precession. Euler's equations give $\dot{\omega}_{3}=0$, so ω_{3} is a constant, and $\dot{\omega}_{1}=-\Omega_{p} \omega_{2}$ and $\dot{\omega}_{2}=\Omega_{p} \omega_{1}$ with $\Omega_{p}=\left(I_{3}-I_{1}\right) \omega_{3} / I_{1}$.

