2/7/20 Lecture outline
* Reading: Finish Chapter 10

e Last time: Euler’s equations

Liw; = Z €ijpljwjwy + reet
ik

for the case with [°** = 0 (e.g. with " = B x F.,; upon taking R = 0 in the body frame).
We saw that if w; = wy = 0, then w3 = const. is a solution, and that small deviations dwy 2
oscillate with angular frequency Q given by Q2 = (I3 — I3)(I3 — I1)w3/I1 15, so it is stable
(92 > 0) if I3 is the largest or smallest eigenvalue, but not if it is the middle eigenvalue.
We next considered the special case I; = I3 (axial symmetric object) beyond the small
w1 2 limit (note that Q2 > 0 if I; = I3). Euler’s equations for I = I give w3 = 0, so wj is
a constant, and w; = —Qyws and we = Qpw; with Q, = (I1 — I3)ws/I1. Use n = wy + iwo
to write these as 1) = —i{lyn so n = woe ¥t Thus @ = (wo cos Qpt, —wp sin ,t, w3) and
L = (Iiws, [yws, Isws). See that &(¢) and L(t) and 3 all line in a plane with constant
angle between them, and L and @ precess around 7,[73 at rate €),. For the earth I} = I, =
(299/300)I5. So 2, ~ w3/300 so the rotation would precess in about 300 days in some
approximation — this is the Chandler wobble and the precession is actually around 400
days (presumably because of the oceans, so the earth is not perfectly rigid).

e Fuler angles: a general rotation is parameterized by three angles (corresponding

to the fact that there are three L generators of rotation). Can get a general rotation as
cosg sing 0

follows: R = R,(¢Y)Ry,(0)R.(¢), where R,(¢) = | —sin¢ cos¢ 0 |, etc. In words, the
0 0 1

steps are (1) Rotate around the Z axis by angle ¢. (2) Rotate around the new €} axis by

angle 6. Now the body axis €Y is a vector with polar angles 6 and ¢, so (3) rotate around
€3 by an angle 1. This defines the Euler angles.

Use this process to go from the initial inertial basis Z, g, Z to the eigenbasis vectors Jl,
152, 153 on the body. Then & = (ﬁé‘—f—ééz—i—zﬁﬁ?’, where Z = cos 9J3—sin 0é). Get ws = (I}-zﬁ?’ =
Y+ cosh and Ly = Isws. More generally, it is convenient to use a basis of ¢} and é}, which
are the intermediate (z, 1) axes, along with 13, e.g. & = (—@sin 6)é, +6é,+ (1 + ¢ cos 0)1)s
and L = (Iywy, Iows, Isws) = (—I1 ¢ sin 0)&}, + 1,6} + I3() + ¢ cos 0)ths. The kinetic energy
is T =11 (¢sin0) + 11,02 + LI3(4) + ¢ cos 0)2.
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e External torque free symmetric top (e.g. a dreidel), Iy = I, with one point fixed.

The axis of rotation is 3 and then
L= %11(92 + sin® 0¢7) + %IS(@Z} + ¢ cosh)? — MgRcos .

Get py = g—g = (I, sin? @ + I cos? 9)$+I3 cos i) = L, and Py = g—i = Ig(coseé—f—zb) = L3
are constants of the motion, as is

: - 02 Dl
E=H=100%+Us (), Up(0) = Po—PvCos Y 4 MgRcosé.
51107 + Ueyy(0) r£(0) 2T, sinZ 0 + 57, T MyHcos

Find that Uf¢(f) has a minimum and two turning points where E = U,¢y, so § oscillates
— this is called nutation. One can solve for <;S in terms of the conserved angular momenta:
¢ = (py — py cosB) /I, sin 0. If |py| > |pyl, then ¢ # 0 so the precession is always in the
same direction. In the other case, it’s possible for the precession direction to change.
Suppose that 6 is sitting at the minimum of U.ff(#), then 6 is a constant and then
it follows from the above equation for ¢ that ¢ is a constant, ¢ = Q. This is steady
precession. The 6 equations of motion show that § = 0 requires minimizing U, 77(0) and
this implies that Q must satisfy the quadratic equation I; Q2 cos 6 — IswsQ+ MgR = 0. For
a rapidly spinning top, the two roots are Qg ~ MgR/Isws and Qarge ~ I3ws /11 cos b

(this latter one is the free precession expected in the absence of torques).



