* Reading: Finish Chapter 10

- Last time: Euler's equations

$$
I_{i} \dot{\omega}_{i}=\sum_{j k} \epsilon_{i j k} I_{j} \omega_{j} \omega_{k}+\vec{\Gamma}_{k}^{e x t}
$$

for the case with $\vec{\Gamma}^{e x t}=0$ (e.g. with $\Gamma^{e x t}=\vec{R} \times \vec{F}_{e x t}$ upon taking $\vec{R}=0$ in the body frame). We saw that if $\omega_{1}=\omega_{2}=0$, then $\omega_{3}=$ const. is a solution, and that small deviations $\delta \omega_{1,2}$ oscillate with angular frequency Ω given by $\Omega^{2}=\left(I_{3}-I_{2}\right)\left(I_{3}-I_{1}\right) \omega_{3}^{2} / I_{1} I_{2}$, so it is stable $\left(\Omega^{2}>0\right)$ if I_{3} is the largest or smallest eigenvalue, but not if it is the middle eigenvalue. We next considered the special case $I_{1}=I_{2}$ (axial symmetric object) beyond the small $\omega_{1,2}$ limit (note that $\Omega^{2}>0$ if $I_{1}=I_{2}$). Euler's equations for $I_{1}=I_{2}$ give $\dot{\omega}_{3}=0$, so ω_{3} is a constant, and $\dot{\omega}_{1}=-\Omega_{p} \omega_{2}$ and $\dot{\omega}_{2}=\Omega_{p} \omega_{1}$ with $\Omega_{p}=\left(I_{1}-I_{3}\right) \omega_{3} / I_{1}$. Use $\eta=\omega_{1}+i \omega_{2}$ to write these as $\dot{\eta}=-i \Omega_{b} \eta$ so $\eta=\omega_{0} e^{-i \Omega_{p} t}$. Thus $\vec{\omega}=\left(\omega_{0} \cos \Omega_{p} t,-\omega_{0} \sin \Omega_{p} t, \omega_{3}\right)$ and $\vec{L}=\left(I_{1} \omega_{1}, I_{1} \omega_{2}, I_{3} \omega_{3}\right)$. See that $\vec{\omega}(t)$ and $\vec{L}(t)$ and $\vec{\psi}_{3}$ all line in a plane with constant angle between them, and \vec{L} and $\vec{\omega}$ precess around $\vec{\psi}_{3}$ at rate Ω_{p}. For the earth $I_{1}=I_{2} \approx$ $(299 / 300) I_{3}$. So $\Omega_{p} \approx \omega_{3} / 300$ so the rotation would precess in about 300 days in some approximation - this is the Chandler wobble and the precession is actually around 400 days (presumably because of the oceans, so the earth is not perfectly rigid).

- Euler angles: a general rotation is parameterized by three angles (corresponding to the fact that there are three \vec{L} generators of rotation). Can get a general rotation as follows: $R=R_{z}(\psi) R_{y}(\theta) R_{z}(\phi)$, where $R_{z}(\phi)=\left(\begin{array}{ccc}\cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1\end{array}\right)$, etc. In words, the steps are (1) Rotate around the \hat{z} axis by angle ϕ. (2) Rotate around the new \vec{e}_{2} axis by angle θ. Now the body axis $\vec{e}_{3}^{\prime \prime}$ is a vector with polar angles θ and ϕ, so (3) rotate around \vec{e}_{3} by an angle ψ. This defines the Euler angles.

Use this process to go from the initial inertial basis $\hat{x}, \hat{y}, \hat{z}$ to the eigenbasis vectors $\vec{\psi}^{1}$, $\vec{\psi}^{2}, \vec{\psi}^{3}$ on the body. Then $\vec{\omega}=\dot{\phi} \hat{z}+\dot{\theta} \hat{e}_{2}^{\prime}+\dot{\psi} \vec{\psi}^{3}$, where $\hat{z}=\cos \theta \vec{\psi}_{3}-\sin \theta \hat{e}_{1}^{\prime}$. Get $\omega_{3}=\vec{\omega} \cdot \overrightarrow{\psi^{3}}=$ $\dot{\psi}+\dot{\phi} \cos \theta$ and $L_{3}=I_{3} \omega_{3}$. More generally, it is convenient to use a basis of \hat{e}_{1}^{\prime} and \hat{e}_{2}^{\prime} which are the intermediate (x, y) axes, along with $\vec{\psi}_{3}$, e.g. $\vec{\omega}=(-\dot{\phi} \sin \theta) \hat{e}_{1}^{\prime}+\dot{\theta} \hat{e}_{2}^{\prime}+(\dot{\psi}+\dot{\phi} \cos \theta) \vec{\psi}_{3}$ and $\vec{L}=\left(I_{1} \omega_{1}, I_{2} \omega_{2}, I_{3} \omega_{3}\right)=\left(-I_{1} \dot{\phi} \sin \theta\right) \hat{e}_{1}^{\prime}+I_{2} \dot{\theta} \hat{e}_{2}^{\prime}+I_{3}(\dot{\psi}+\dot{\phi} \cos \theta) \overrightarrow{\psi_{3}}$. The kinetic energy is $T=\frac{1}{2} I_{1}(\dot{\phi} \sin \theta)^{2}+\frac{1}{2} I_{2} \dot{\theta}^{2}+\frac{1}{2} I_{3}(\dot{\psi}+\dot{\phi} \cos \theta)^{2}$.

- External torque free symmetric top (e.g. a dreidel), $I_{1}=I_{2}$, with one point fixed. The axis of rotation is ψ_{3} and then

$$
L=\frac{1}{2} I_{1}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)+\frac{1}{2} I_{3}(\dot{\psi}+\dot{\phi} \cos \theta)^{2}-M g R \cos \theta
$$

Get $p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=\left(I_{1} \sin ^{2} \theta+I_{3} \cos ^{2} \theta\right) \dot{\phi}+I_{3} \cos \theta \dot{\psi}=L_{z}$ and $p_{\psi}=\frac{\partial L}{\partial \dot{\psi}}=I_{3}(\cos \theta \dot{\phi}+\dot{\psi})=L_{3}$ are constants of the motion, as is

$$
E=H=\frac{1}{2} I_{1} \dot{\theta}^{2}+U_{\text {eff }}(\theta), \quad U_{e f f}(\theta)=\frac{\left(p_{\phi}-p_{\psi} \cos \theta\right)^{2}}{2 I_{1} \sin ^{2} \theta}+\frac{p_{\psi}^{2}}{2 I_{3}}+M g R \cos \theta
$$

Find that $U_{\text {eff }}(\theta)$ has a minimum and two turning points where $E=U_{\text {eff }}$, so θ oscillates - this is called nutation. One can solve for $\dot{\phi}$ in terms of the conserved angular momenta: $\dot{\phi}=\left(p_{\phi}-p_{\psi} \cos \theta\right) / I_{1} \sin ^{2} \theta$. If $\left|p_{\phi}\right|>\left|p_{\psi}\right|$, then $\dot{\phi} \neq 0$ so the precession is always in the same direction. In the other case, it's possible for the precession direction to change.

Suppose that θ is sitting at the minimum of $U_{\text {eff }}(\theta)$, then θ is a constant and then it follows from the above equation for $\dot{\phi}$ that $\dot{\phi}$ is a constant, $\dot{\phi} \equiv \Omega$. This is steady precession. The θ equations of motion show that $\dot{\theta}=0$ requires minimizing $U_{\text {eff }}(\theta)$ and this implies that Ω must satisfy the quadratic equation $I_{1} \Omega^{2} \cos \theta-I_{3} \omega_{3} \Omega+M g R=0$. For a rapidly spinning top, the two roots are $\Omega_{\text {small }} \approx M g R / I_{3} \omega_{3}$ and $\Omega_{\text {large }} \approx I_{3} \omega_{3} / I_{1} \cos \theta$ (this latter one is the free precession expected in the absence of torques).

