
2/7/20 Lecture outline

⋆ Reading: Finish Chapter 10

• Last time: Euler’s equations

Iiω̇i =
∑

jk

ǫijkIjωjωk + ~Γextk

for the case with ~Γext = 0 (e.g. with Γext = ~R× ~Fext upon taking ~R = 0 in the body frame).

We saw that if ω1 = ω2 = 0, then ω3 = const. is a solution, and that small deviations δω1,2

oscillate with angular frequency Ω given by Ω2 = (I3 − I2)(I3 − I1)ω
2
3/I1I2, so it is stable

(Ω2 > 0) if I3 is the largest or smallest eigenvalue, but not if it is the middle eigenvalue.

We next considered the special case I1 = I2 (axial symmetric object) beyond the small

ω1,2 limit (note that Ω2 > 0 if I1 = I2). Euler’s equations for I1 = I2 give ω̇3 = 0, so ω3 is

a constant, and ω̇1 = −Ωpω2 and ω̇2 = Ωpω1 with Ωp = (I1 − I3)ω3/I1. Use η = ω1 + iω2

to write these as η̇ = −iΩbη so η = ω0e
−iΩpt. Thus ~ω = (ω0 cosΩpt,−ω0 sinΩpt, ω3) and

~L = (I1ω1, I1ω2, I3ω3). See that ~ω(t) and ~L(t) and ~ψ3 all line in a plane with constant

angle between them, and ~L and ~ω precess around ~ψ3 at rate Ωp. For the earth I1 = I2 ≈

(299/300)I3. So Ωp ≈ ω3/300 so the rotation would precess in about 300 days in some

approximation – this is the Chandler wobble and the precession is actually around 400

days (presumably because of the oceans, so the earth is not perfectly rigid).

• Euler angles: a general rotation is parameterized by three angles (corresponding

to the fact that there are three ~L generators of rotation). Can get a general rotation as

follows: R = Rz(ψ)Ry(θ)Rz(φ), where Rz(φ) =





cosφ sinφ 0
− sinφ cosφ 0

0 0 1



, etc. In words, the

steps are (1) Rotate around the ẑ axis by angle φ. (2) Rotate around the new ~e′2 axis by

angle θ. Now the body axis ~e′′3 is a vector with polar angles θ and φ, so (3) rotate around

~e3 by an angle ψ. This defines the Euler angles.

Use this process to go from the initial inertial basis x̂, ŷ, ẑ to the eigenbasis vectors ~ψ1,

~ψ2, ~ψ3 on the body. Then ~ω = φ̇ẑ+θ̇ê′2+ψ̇
~ψ3, where ẑ = cos θ ~ψ3−sin θê′1. Get ω3 = ~ω·~ψ3 =

ψ̇+φ̇ cos θ and L3 = I3ω3. More generally, it is convenient to use a basis of ê′1 and ê′2 which

are the intermediate (x, y) axes, along with ~ψ3, e.g. ~ω = (−φ̇ sin θ)ê′1+ θ̇ê
′

2+(ψ̇+φ̇ cos θ)~ψ3

and ~L = (I1ω1, I2ω2, I3ω3) = (−I1φ̇ sin θ)ê
′

1+I2θ̇ê
′

2+I3(ψ̇+ φ̇ cos θ)~ψ3. The kinetic energy

is T = 1

2
I1(φ̇ sin θ)

2 + 1

2
I2θ̇

2 + 1

2
I3(ψ̇ + φ̇ cos θ)2.
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• External torque free symmetric top (e.g. a dreidel), I1 = I2, with one point fixed.

The axis of rotation is ψ3 and then

L = 1

2
I1(θ̇

2 + sin2 θφ̇2) + 1

2
I3(ψ̇ + φ̇ cos θ)2 −MgR cos θ.

Get pφ = ∂L

∂φ̇
= (I1 sin

2 θ+I3 cos
2 θ)φ̇+I3 cos θψ̇ = Lz and pψ = ∂L

∂ψ̇
= I3(cos θφ̇+ ψ̇) = L3

are constants of the motion, as is

E = H = 1

2
I1θ̇

2 + Ueff (θ), Ueff (θ) =
(pφ − pψ cos θ)2

2I1 sin
2 θ

+
p2ψ
2I3

+MgR cos θ.

Find that Ueff (θ) has a minimum and two turning points where E = Ueff , so θ oscillates

– this is called nutation. One can solve for φ̇ in terms of the conserved angular momenta:

φ̇ = (pφ − pψ cos θ)/I1 sin
2 θ. If |pφ| > |pψ|, then φ̇ 6= 0 so the precession is always in the

same direction. In the other case, it’s possible for the precession direction to change.

Suppose that θ is sitting at the minimum of Ueff (θ), then θ is a constant and then

it follows from the above equation for φ̇ that φ̇ is a constant, φ̇ ≡ Ω. This is steady

precession. The θ equations of motion show that θ̇ = 0 requires minimizing Ueff (θ) and

this implies that Ω must satisfy the quadratic equation I1Ω
2 cos θ−I3ω3Ω+MgR = 0. For

a rapidly spinning top, the two roots are Ωsmall ≈ MgR/I3ω3 and Ωlarge ≈ I3ω3/I1 cos θ

(this latter one is the free precession expected in the absence of torques).
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